
www.manaraa.com

i

A Row Based Non-Contiguous Processor

Allocation Strategy for 2D Mesh-Connected

Multicomputers

By

Dhaifallah S. Alsardia

Supervisor

Dr. Saad Bani-Mohammad

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master’s Degree of Science in Computers

Science

Deanship of Graduate Studies

Al al-Bayt University

May, 2017

www.manaraa.com

ii

Committee Decision

This Thesis (A Row Based Non-Contiguous Processor

Allocation Strategy for 2D Mesh-Connected Multicomputers)

was successfully defended and approved on 24/05/2017.

Examination Committee Signature

Dr. Saad Bani-Mohammad

(Supervisor)

…………………………

Prof. Ismael Ababneh

…………………………

Dr. Omar Shatnawi

…………………………

Dr. Shadi Aljawarneh

…………………………

www.manaraa.com

iii

Dedication

To my parents,
To my brothers and sisters
for their endless love, support and

encouragement.

www.manaraa.com

iv

Acknowledgments

First of all, I would like to express my deep gratitude to my supervisor, Dr. Saad Bani-

Mohammad for his inspiring guidance, valuable advice, and constant

encouragement throughout the progress of this work. His suggestion and his

frequent questions motivated this thesis and he never failed to provide his help at all

stages of this thesis.

My great thanks are for my parents, my brother, and my sisters, without their

encouragements and support I could not do anything.

I appreciate all of my friends who encouraged me during my master study; they truly

helped me a lot.

www.manaraa.com

v

List of Content

Committee Decision ... ii

Dedication .. iii

Acknowledgments ... iv

List of Content .. v

List of Figures .. vii

List of Tables ... xi

Abstract .. xii

Chapter One Introduction .. 1

1.1 Processor Allocation .. 4

1.2 Motivation and Contribution .. 8

1.3 Outline of the Thesis .. 13

Chapter Two Background and Preliminaries ... 14

2.1 Related Allocation strategies .. 14

2.1.1 Contiguous allocation strategies ... 15

2.1.2 Non-Contiguous Allocation Strategies .. 18

2.2 Switching Method ... 25

2.3 Routing Algorithm .. 28

2.4 Communication Patterns ... 30

www.manaraa.com

vi

2.5 Assumptions .. 31

2.6 The Simulation Tool (ProcSimity Simulator) .. 33

2.7 Justification of the Method of Study ... 34

Chapter Three ... 36

3.1 Introduction .. 36

3.2 Preliminary .. 38

3.3 The Proposed Row Based Allocation Strategy (RBS) ... 39

3.4 Complexity Analysis for RBS Allocation Strategy ... 49

3.4.1 The Allocation Time Complexity .. 50

3.4.1 The Deallocation Time Complexity .. 50

Chapter Four Simulation Results .. 52

4.1 Turnaround Time .. 57

4.2 System Utilization .. 66

4.3 Conclusion .. 72

Chapter Five Conclusion and Future Work .. 74

5.1 Conclusion .. 74

5.2 Directions for the Future Works .. 79

References .. 81

 90 ... ملخَّص

www.manaraa.com

vii

List of Figures

Figure 1.1 An example of an 𝟖 × 𝟖 2D mesh ...4

Figure 2.1: An allocation using the frame sliding strategy. 17

Figure 2.2: An allocation using First Fit and Best Fit strategies. 18

Figure 2.3: Paging(0) using different indexing schemes: (a) Row-major indexing,

(b) Shuffled row-major, (c) snake-like indexing, and (d) shuffled snake-like

indexing. ... 20

Figure 2.4: An allocation using Paging Row_major (0) strategy. 21

Figure 2.5: An allocation using MBS allocation strategy. 22

Figure 2.6: An allocation using ESS allocation strategy. .. 23

Figure 2.7: an example of allocation using GABL allocation strategy. 25

Figure 2.8: Dimension-ordered (𝑿𝒀) routing in an 𝟖 × 𝟖 2D mesh-connected network.

 .. 29

Figure 3.1: An example of an 𝟖 × 𝟖 mesh system ... 39

Figure 3.2: Allocating processors to a job requests a 𝟐 × 𝟐 submesh using the RBS.

 .. 41

Figure 3.3: Allocating processors to a job requests a 𝟏 × 𝟕 submesh using the RBS.

 .. 42

Figure 3.4 :Allocating processors to a job requests a 𝟓 × 𝟒 submesh using the RBS.

 .. 44

Figure 3.5: Allocating processors to a job requests a 7 × 4 submesh using the RBS

www.manaraa.com

viii

. ... 45

Figure 3.6: Allocating processors to a job requests a 𝟕 × 𝟒 submesh using the RBS.

 .. 46

Figure 3.7: Allocating processors to a job requests a 𝟓 × 𝟐 submesh using the RBS.

 .. 46

Figure 3.8: Allocating processors to a job requests a 𝟓 × 𝟐 submesh using the RBS.

 .. 47

Figure 3. 9: Outline of the RBS allocation algorithm. ... 48

Figure 3.10: Outline of the RBS deallocation algorithm. .. 49

Figure 3.11: An example of Free Node Lists. ... 49

Figure 4.1: Average turnaround time vs. system load for the one-to-all

communication pattern and uniform side lengths distribution in a 𝟏𝟔 × 𝟏𝟔 mesh.. 58

Figure 4.2: Average turnaround time vs. system load for the one-to-all

communication pattern and uniform decreasing side lengths distribution in a 𝟏𝟔 ×

𝟏𝟔 mesh. ... 59

Figure 4.3: Average turnaround time vs. system load for the all-to-all

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔 mesh.

 .. 61

Figure 4.4: Average turnaround time vs. system load for the all-to-all

communication pattern and uniform decreasing side lengths distribution in a 𝟏𝟔 ×

𝟏𝟔 mesh. ... 61

www.manaraa.com

ix

Figure 4.5: Average turnaround time vs. system load for the random

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔 mesh.

 .. 63

Figure 4.6: Average turnaround time vs. system load for the random

communication pattern and uniform decreasing side lengths distribution in a 𝟏𝟔 ×

𝟏𝟔 mesh. ... 64

Figure 4.7: Average turnaround time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a 𝟏𝟔 × 𝟏𝟔 mesh.. 65

Figure 4.8: Average turnaround time vs. system load for the near neighbor

communication pattern and uniform decreasing side lengths distribution in a 𝟏𝟔 ×

𝟏𝟔 mesh. ... 66

Figure 4.9: Mean system utilization vs. system load for the one-to-all

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔 mesh.

 .. 68

Figure 4.10 Mean system utilization vs. system load for the one-to-all

communication pattern and uniform decreasing job side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh. ... 68

Figure 4.11: Mean system utilization vs. system load for the all-to-all

communication pattern and uniform job side lengths distribution in a 16 × 16 mesh.

www.manaraa.com

x

 .. 69

Figure 4.12: Mean system utilization vs. system load for the all-to-all

communication pattern and uniform decreasing job side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh. ... 69

Figure 4.13: Mean system utilization vs. system load for the random

communication pattern and uniform decreasing job side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh. ... 70

Figure 4.14: Mean system utilization vs. system load for the random

communication pattern and uniform decreasing job side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh. ... 70

Figure 4.15: Mean system utilization vs. system load for the near neighbor

communication pattern and uniform decreasing job side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh. ... 71

Figure 4.16: Mean system utilization vs. system load for the near neighbor

communication pattern and uniform decreasing job side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh. ... 71

www.manaraa.com

xi

List of Tables

Table 4. 1: The System Parameters used in the Simulation Experiments. 55

www.manaraa.com

xii

A Row Based Non-Contiguous Processor Allocation Strategy for

2D Mesh-Connected Multicomputers

By

Dhaifallah S. Alsardia

Supervisor

Dr. Saad Bani-Mohammad

Abstract

Multicomputer systems typically support diverse types of applications with various

sizes and characteristics in a multiuser environment. Therefore, it is critical to use

efficient processor allocation strategies to exploit the computation power of such

systems. An efficient processor allocation strategy is that which maximizes system

utilization and minimizes the jobs' turnaround time. In mesh-connected

multicomputers, the processor allocation strategies can be classified into two main

categories: contiguous and non-contiguous. In contiguous allocation, a job is

allocated a submesh only if its processors are contiguous and form a shape the same

as the connecting network. This allocation condition could lead to high

www.manaraa.com

xiii

 processor fragmentation which could decrease the system performance in terms of

system utilization and turnaround times of jobs. Non-contiguous processor allocation

has been adopted as a feasible solution to the processor fragmentation problem.

This adoption has encouraged by the emergence of the wormhole routing and

advances in switching techniques which have made the communication latency less

sensitive to the distance between the communicating nodes. Moreover, the

experimental evidence has shown that only a slight improvement can be gained from

further improving the existing contiguous allocation strategies. In non-contiguous

allocation, a job request can be partitioned and allocated multiple disjoint submeshes

instead of being queued waiting for a one to be available. This is expected to improve

the system utilization and hence the average turnaround times of jobs. However, an

extra communication overhead is expected due to the contention among messages

of different jobs. The existing non-contiguous allocation strategies use various

techniques to capture and allocate the available submeshes, however, in general,

they focus on maintaining a high degree of contiguity among the processors of the

allocated submeshes by compacting submeshes allocated to different jobs next to

each other. In this thesis, a new non-contiguous allocation strategy, referred to as

Row Based Strategy (RBS), has been suggested for 2D mesh-connected

multicomputers, which alleviates the message contention inside the network. RBS

classifies the incoming job requests according to their sizes into large and small in

order to allocate them in a way that minimizes the contention among different jobs'

messages. The simulation results have revealed that the proposed strategy

www.manaraa.com

xiv

is superior to that of the existing non-contiguous and contiguous allocation strategies

in terms of job turnaround time when the all-to-all communication pattern is used,

and this is due to its ability to alleviate message contention inside the network. Also,

in most cases, it is relatively better than other allocation strategies for the one-to-all

and random communication patterns.

www.manaraa.com

1

Chapter One

Introduction

Parallel computers have been considered as one of the most powerful computing

platforms that support large and complex applications in various areas. A parallel

computer consists of multiple processing units that cooperate to solve a

computational problem (Foster, 1995; Kumar, et al., 2003).

Parallel computers can be generally classified according to the memory architecture

into two types: shared memory and distributed memory model. In shared memory

model, also known as multiprocessors, processors communicate by modifying data

in a shared memory, while in distributed memory model, also known as

multicomputers, since each processor has its own memory, the processors

communicate by exchanging messages via an interconnection network (Foster,

1995; Kumar, et al., 2003).

Interconnection networks provide a mechanism for data transfer among processing

nodes. Typical, interconnection networks consist of links and switches. Generally,

interconnection networks can be classified into static (also referred to as direct) and

dynamic (referred to as indirect) networks. In dynamic networks, links are connected

to each other dynamically by means of switches to form communication paths among

processing nodes; examples of dynamic networks include bus-based

www.manaraa.com

2

 (Ferreira, et al., 1994), multistage interconnection (Kruskal and Snir, 1983) and

crossbar (Fujii, et al., 1997). In static networks, there are point-to-point or direct

communication links among nodes; examples of static networks include mesh (Adve

and Vernon, 1994), k-ary n-cube (Min, 2003), and hypercube (Duato, et al., 1997).

Direct networks have been implemented in many large-scale multicomputer systems

because they are scalable; it can be simply scaled up by adding nodes and channels

based on the predefined network structure. Moreover, direct networks can exploit

communication locality exhibited by many real-world applications (Bani-Mohammad,

2008).

Many networks architecture have been proposed for multicomputers, yet the mesh

topology has gained much popularity because of its simplicity, scalability, regularity

and ease of implementation (Babbar and Krueger, 1994; Das Sharma and Pradhan,

1996; Chang and Mohapatra, 1998; Yoo and Das, 2002). Two-dimensional mesh is

an extension of a linear array to two-dimensions. Each node in 2D mesh is denoted

by an ordered pair (𝑥, 𝑦) to represent its row and column position respectively. Each

node (except those at the edges) is connected to four neighbors by direct

communication links.

www.manaraa.com

3

Various regular structure applications such as matrix computations and image

processing map very naturally into a 2D mesh. Three-dimensional mesh is a

generalization of 2D mesh, where weather modeling and structural modeling are

examples of computations that can be mapped naturally into this topology (Foster,

1995; Kumar, et al., 2003). Because of these features, mesh topology has been

adopted in many commercial and experimental multicomputers.

 The Intel Paragon (Intel Corporation, 1991), the Delta Touchstone (Intel

Corporation, 1991), and the iWARP (Peterson, et al., 1991) are examples of 2D

mesh-connected multicomputers. Examples of 3D mesh-connected multicomputers

include the MIT J-machine (Noakes, et al.), the IBM blueGene/L (Blumrich, et al.,

2003), and the Cray XT3 (Cray, 2005). Figure 1.1 shows an example of a 6 × 6 2D

mesh, where allocated processors are denoted by black circles and free processors

are denoted by white circles.

www.manaraa.com

4

Figure 1.1 An example of an 𝟖 × 𝟖 2D mesh

1.1 Processor Allocation

Multicomputer systems typically support diverse types of applications with diverse

sizes and characteristics in a multiuser environment. Therefore, processor

management system is considered as a critical factor in exploiting the computational

power of multicomputers (Windisch, et al., 1995; Chang and Mohapatra, 1998; Yoo

and Das, 2002). Processor management system mainly comprised of processor

allocation and job scheduling. Processor allocation is the assignment of a requested

number of free processors to a requested job, while job scheduling is the policy that

specifies the order of selecting a waiting job for execution (Babbar and Krueger,

www.manaraa.com

5

 1994; Ababneh and Bani-Mohammad, 2011). If the processor allocator failed to find

a requested submesh for a selected job because of size and/or shape conditions, or

if there are already awaiting jobs in the system, then it joins the waiting jobs queue.

Once the allocator finds a suitable submesh for a selected job, then the job

exclusively holds the processors in this submesh for the whole time of its execution.

Upon completion of execution, the allocated processors are freed and become

available for executing another job (Lo, et al., 1997; Windisch, et al., 1995; Chang

and Mohapatra, 1998).

It is the allocation algorithm responsibility to find available submeshes for incoming

job requests. This process is called submesh recognition ability. If the allocation

algorithm can always find a submesh for an incoming job if at least one is available,

then it is considered to have a complete recognition ability. Although,

the performance of the system improves as the submesh recognition of the allocation

algorithm improves. Adopting a complete recognition ability algorithm could increase

the complexity and the allocation overhead (i.e., allocation and deallocation time).

The aim of any allocation algorithm is to minimize the job turnaround time (i.e. the

time that the job spends in the system from arrival to departure (ProcSimity User’s

Manual, 1997)). Therefore, a good allocation algorithm is the algorithm that realize

recognition-completeness with little allocation overhead (Yoo and Das, 2002).

www.manaraa.com

6

Processor allocation strategies can be classified into two main categories:

contiguous and non-contiguous. In contiguous allocation strategies (Li and Cheng,

1991; Zhu, 1992; Das Sharma and Pradhan, 1996; Chuang and Tzeng, 1994;

Ababneh, 2001; Ababneh, et al., 2010), jobs are allocated to distinct submeshes of

physically adjacent processors, with the same topology as the underlying

interconnection network. Although, these strategies aim to eliminate the inter-

process interference since only the communication of the same process are

expected within a mesh, and hence the communication overhead is alleviated by

decreasing the distances among the allocated processors. These strategies can

cause high processor fragmentation because of the contiguity condition (Lo, et al.,

1997; Chang and Mohapatra, 1998). This fragmentation is expected to degrade the

system performance in terms of job turnaround time, due to the degradation of the

mean system utilization (i.e. the percentage of processors that are utilized over a

given time (ProcSimity User’s Manual, 1997)).

Processor fragmentation comes out into two forms: internal and external (Das

Sharma and Pradhan, 1996; Lo, et al., 1997; Chang and Mohapatra, 1998; Seo,

2005). Internal fragmentation occurs when a job is allocated more processors than

it requests; typically, because of a restricted shape of submeshes allocation.

www.manaraa.com

7

For example, powers of two squares as in (Li and Cheng, 1991), results in extra

processors to be allocated to a requested job, while these processors are wasted

and not used in the actual computation. External fragmentation occurs when a

waiting job cannot be allocated even if the requested number of processors is

available; this is because of the contiguity and shape conditions. Assuming that the

system state shown in Figure 1.1 and the allocation algorithm is contiguous, if a job

requests a 4 × 3 submesh of processors, then the algorithm fails to allocate the

requested sub-mesh in spite of the sufficient number of free processors that are exist

in the mesh.

Experimental evidence has shown that little performance improvement can be

obtained from refinements of contiguous allocation algorithm (Lo, et al., 1997; Chang

and Mohapatra, 1998). The evolution in networking technology such as the

wormhole routing (Ni and McKinley, 1993; Mohapatra, 1998) and faster switching

technique have reduced the impact of the distance between the communicating

nodes on the communication latency (Lo, et al., 1997; Chang and Mohapatra, 1998),

which has made the non-contiguous allocation feasible. The communication latency

is the time that the message takes to be received by the destination node.

Several non-contiguous allocation strategies have been proposed (Lo, et al., 1997;

Mache, et al., 1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and

Naghibzadeh, 2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-

Mohammad, et al., 2015; Bani-Mohammad, 2017),

www.manaraa.com

8

which can eliminate both internal and external fragmentation. In non-contiguous

allocation, a job can be allocated to multiple disjoint smaller submeshes instead of

being queued waiting for a contiguous one with a fit shape to be available. Although

this leads to a better system utilization, the dispersal of submeshes, that can execute

the same job, may increase the communication overhead due to the inter-process

contention produced by messages from different jobs and long distances between

the communicating nodes (Chang and Mohapatra, 1998; Lo, et al., 1997).

Therefore, it is desirable for the processor allocation strategy to be hybrid between

contiguous and non-contiguous allocation strategies; meaning that, the allocation

strategy should have the ability to partition the job while maintaining a high degree

of contiguity among the allocated processors (Lo, et al., 1997; Bani-Mohammad, et

al., 2007). Yet, it stills the allocation strategy responsibility to recognize and allocate

the available sub-meshes in a way that minimizes the communication overhead in

order to improve the overall system performance.

1.2 Motivation and Contribution

The non-contiguous processor allocation model has solved the problem of

fragmentation that has been considered as the performance bottleneck of the

contiguous processor allocation strategies and degrades the system performance in

terms of job turnaround time and system utilization because of the physical contiguity

and shape allocation conditions (Li and Cheng, 1991; Zhu, 1992; Lo, et al., 1997).

www.manaraa.com

9

Non-contiguous allocation improves the system performance in terms of system

utilization up to 78% for common workloads (Wan, et al., 1996; Lo, et al., 1997); this

improvement is due to the ability of allocating several scattered submeshes to a

requested job (Mache and Lo, 1997).

The main performance bottleneck of the non-contiguous processor allocation

strategies is the message contention inside the network. The study proposed in (Min

and Mutka, 1994), classifies the contention into two types: internal contention and

external contention. Internal contention occurs when two or more routing paths within

the same job try to use a physical channel at the same time. This type of contention

is an inherent property of each job and it can occur in both contiguous and non-

contiguous allocation strategies, while external contention occurs when two or more

routing paths of different jobs try to use the same physical channel simultaneously.

This type of contention occurs only in the non-contiguous allocation model. When

non-contiguous allocation is adopted in a system with wormhole routing technique,

the external contention increases the delay of the communication time (Min and

Mutka, 1994).

Obviously, there is a tradeoff between the processor utilization due to the

fragmentation problem and the jobs turnaround time due to the network contention

(Min and Mutka, 1994; Moore and Lionel, 1996).

www.manaraa.com

10

The contention depends on the switching technology in the underlying network and

the communication pattern among the allocated processors (Min and Mutka, 1994).

Although, contention can be negligible, when the software latency (i.e., the latency

at sender and receiver for processing the message) is high or when the message

size is small (Moore and Lionel, 1996), the communication overhead increases

significantly due to the message contention among the messages of different jobs.

This would increase the delay, and defect the gain of improved system utilization;

and consequently, degrades the system performance in terms of jobs turnaround

time (Min and Mutka, 1994; Mache and Lo, 1997). To improve the performance of

the non-contiguous allocation strategies, it is important to choose the allocation

strategy that causes minimal message contention (Mache and Lo, 1997), where the

spatial layout (i.e., the geometric location) of the allocated submeshes in the mesh

system plays a significant role in the interference among jobs' messages (Mache

and Lo, 1997).

The existing non-contiguous allocation strategies (Lo, et al., 1997; Mache, et al.,

1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh,

2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015;

Bani-Mohammad, 2017) use various techniques to capture and allocate free sub-

meshes in the mesh system.

www.manaraa.com

11

However, in general, they focus on maintaining a high degree of contiguity among

the processors in the allocated sub-meshes rather than reducing message

contention in the submeshes that are allocated to different jobs.

Moreover, it is observed that the existing non-contiguous allocation strategies

compact different sub-meshes to preserve larger contiguous sub-meshes for

incoming job requests, expecting that this would reduce the communication

overhead. Although this seems to be a good technique, but many experimental

results in existing non-contiguous allocation strategies (Lo, et al., 1997; Bani-

Mohammad, et al., 2007; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al.,

2015; Bani-Mohammad, 2017), under common system conditions, reveal that the

average system utilization increases as the load of the job requests increases, until

it eventually stabilized to a value about 80%, meaning that during the overall

execution time, there would be, in average, about 20% of unutilized processors in

the system, and a full system utilization is unachievable. Therefore, compacting

different allocated submeshes seems to be a less significant factor in reducing the

overall communication overhead. In contrast, considering the spatial layout when

allocating submeshes for different job requests can reduce the message contention

between the messages of these jobs, which results in reducing the overall

communication overhead and hence improves the system performance.

Motivated by the above observations, a new row based non-contiguous processor

allocation strategy for 2D mesh-connected multicomputer, referred to as Row Based

Strategy (RBS) is proposed. The proposed strategy considers

www.manaraa.com

12

 the spatial layout of the allocated submeshes in the mesh system. RBS classifies

the incoming job requests according to their sizes, (large and small); in order to

allocate them in submeshes that have minimal shared physical communication

channel for the routing paths of their messages. Therefore, to alleviate message

contention especially for large jobs, RBS tries to maintain a high degree of contiguity

among the processors allocated to the same job with a little allocation overhead.

The simulation experiments results reveal that RBS performs much better than the

previous non-contiguous and contiguous allocation strategies considered in this

thesis in terms of jobs turnaround time when the all-to-all communication pattern is

used. This is because all to all communication pattern produces much message

collision and it is considered as the weak point of the non-contiguous allocation

strategies (Suzaki, et al., 1996). The results have also shown that the performance

of RBS is relatively better than that of the previous non-contiguous allocation

strategies for one-to-all and random communication patterns in most cases.

However, it is not better than that of the other contiguous and non-contiguous

allocation strategies when the near neighbor communication pattern is used,

because the privilege in this communication pattern is for the strategies that maintain

a high degree of contiguity and maintain a rectangular shape of the allocated

submeshes.

www.manaraa.com

13

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes well-known

contiguous and non-contiguous allocation strategies that have been proposed for

mesh-connected multicomputer. Also, it presents some preliminaries required for

understanding the subsequent chapters and provides a list of assumptions used in

this research. Finally, the chapter describes the method of study used in this

research and justifies the selection of simulation as a study tool.

Chapter 3 introduces the Row Based Strategy (RBS) as a new non-contiguous

allocation algorithm for 2D mesh-connected multicomputers and describes the main

features of the proposed strategy.

Chapter 4 analyzes and discusses the results of the simulation experiments and

compares the performance of the proposed strategies against that of the well-known

non-contiguous and contiguous ones.

Chapter 5 summarizes the main results presented in this research and outline

possible directions to continue this work in the future.

www.manaraa.com

14

Chapter Two

Background and Preliminaries

The main objective of this chapter is to describe some of the existing contiguous and

non-contiguous allocation strategies that have been proposed in the literature (Li and

Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Das Sharma and Pradhan,

1996; Lo, et al, 1997; Chang and Mohapatra, 1998; Ababneh, 2001; Wu, et al., 2003;

Moghaddam and Naghibzadeh, 2006; Bani-Mohammad, et al., 2007; Ababneh,

2008; Ababneh, et al., 2010; Bani-Mohammad, et al., 2015; Bani-Mohammad, 2017)

for 2D mesh-connected multicomputers. This chapter also describes the system

model assumed in this study. Such background is necessary for understanding the

subsequent chapters.

2.1 Related Allocation strategies

This section overviews some of the existing contiguous and non-contiguous

allocation strategies that have been proposed for 2D mesh-connected

multicomputers.

www.manaraa.com

15

2.1.1 Contiguous allocation strategies

Many non-contiguous allocation strategies (Li and Cheng, 1991; Zhu, 1992; Chuang

and Tzeng, 1994; Das Sharma and Pradhan, 1996; Ababneh, 2001; Ababneh, et al.,

2010) have been proposed for 2D mesh-connected multicomputers. Generally, most

of them aim to reduce fragmentation caused by contiguity constraints in the mesh

system, since the problem of high processor fragmentation can significantly affect

the system performance. Below we describe some of the well-known strategies.

Two Dimensional Buddy System (2DBS): The 2DBS allocation (Li and Cheng,

1991) is proposed to square meshes with a side length of the power two. A requested

job is also allocated to a square sub-mesh with a side length that is rounded up to

the nearest power of two of the maximum side length of the requested job. If a job

requests a sub-mesh of size 𝑤 × ℎ, such that 𝑤 ≤ ℎ, then the 2DBS allocates a sub-

mesh of size 𝑠 × 𝑠, where 𝑠 = 2┌ 𝑙𝑜𝑔2(max (𝑤¸ ℎ)) ┐. For example, if a job

requests a sub-mesh of size 2 × 4 it is allocated a square sub-mesh of size 4 × 4,

which is more than its request, causing a 50% of internal fragmentation, as shown

in Figure 2.1. This strategy suffers from high internal and external fragmentation

because of the rigid side length condition, and it lacks complete sub-mesh

recognition ability. Also, it is applicable only to square meshes (Zhu, 1992; Lo, et al.,

1997;Chang and Mohapatra, 1998).

www.manaraa.com

16

Figure 2. 1 An allocation using the 2D Buddy allocation strategy.

Frame Sliding (FS): The frame sliding strategy (Chuang and Tzeng, 1994) is

proposed to reduce the fragmentation problem caused by 2DBS, it is applicable to

any shape of a sub-mesh request in any mesh system. The FS algorithm slides a

frame of a requested sub-mesh size across a bit array that represents allocated and

free processors, to find an available sub-mesh. It starts at the lower leftmost free

processor as a base of a candidate frame and examines for suitable frame by

horizontal and vertical strides equivalent to width and length of the frame,

respectively. The searching process ends when a suitable frame is found or when

all candidate frames were checked. Although FS eliminates internal fragmentation,

but it cannot recognize all available sub-meshes and it suffers from high external

fragmentation. FS may fail to allocate a sub-mesh even a one exist because the

jumps are by width and height of the requested sub-mesh. (Lo, et al., 1997; Chang

and Mohapatra, 1998). An example of such case is shown if Figure 2.2.

www.manaraa.com

17

Figure 2.1: An allocation using the frame sliding strategy.

First Fit (FF) and Best Fit (BF): These strategies (Zhu, 1992) scan free sub-meshes

represented in a bit array. FF allocates the first found sub-mesh with a sufficient

number of processors, whereas BF allocates a sub-mesh with the least number of

allocated neighbors to conserve a large contiguous mesh. Figure 2.3 shows the

allocation of a job request for a 3 × 3 sub-mesh using FF and BF. These strategies

have better sub-mesh recognition ability than 2DBS, nevertheless, they could fail to

allocate large enough sub-meshes since they do not consider switching the

requested shape orientation. Although the BF attempts to reduce the probability of

fragmentation, both strategies suffer from significant external fragmentation (Lo, et

al., 1997).

www.manaraa.com

18

Figure 2.2: An allocation using First Fit and Best Fit strategies.

2.1.2 Non-Contiguous Allocation Strategies

Experimental evidence has shown that little performance improvement can be

gained by refinements of contiguous allocation strategies (Lo, et al., 1997; Chang

and Mohapatra, 1998). The wormhole routing (Ni and McKinley, 1993) and faster

switching technique have made the communication latency less sensitive to the

distance between the communication nodes, which has made the non-contiguous

allocation feasible (Lo, et al., 1997; Chang and Mohapatra, 1998). Non-contiguous

allocation allows a job to be executed when there are enough free processors in the

mesh. Several non-contiguous allocation strategies have been proposed for 2D

mesh multicomputers (Lo, et al., 1997; Chang and Mohapatra, 1998; Wu, et al.,

2003; Moghaddam and Naghibzadeh, 2006; Bani-Mohammad,

www.manaraa.com

19

 et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015; Bani-Mohammad,

2017). Some of the well-known non-contiguous allocation strategies that have been

proposed in the literature are described below.

Random allocation strategy: This strategy (Lo, et al., 1997) simply allocates 𝑘

randomly selected available processors to a request for 𝑘 processors. Despite its

simplicity and fragmentation elimination, it does not enforce contiguity. Therefore, it

is expected to cause much communication interference between jobs (Lo, et al,

1997).

Paging: In paging strategy (Lo, et al., 1997), the whole mesh is partitioned into equal

sized sub-meshes called pages. The page size is 2𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒; where 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 is

non-negative integer. The page is the basic unit of allocation. Four different indexing

schemes are proposed for indexing the pages (row-major, shuffled row-major,

snake-like, and shuffled snake-like) as shown in Figure 2.4. A paging algorithm is

represented by indexing scheme and page size as 𝑝𝑎𝑔𝑖𝑛𝑔𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔_𝑠𝑐ℎ𝑒𝑚𝑒(𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒).

A job that requests 𝑘 processors is allocated ┌ (
𝑘

2𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒. 2𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
) ┐ page of

processors, by traversing the free page list according to the given indexing scheme

(Lo, et al., 1997). Paging (0) eliminates both internal and external fragmentation.

Much contiguity can be enforced by increasing the page size, but as the page size

increases, the paging would probably incur much internal fragmentation. Partitioning

in Paging is based on the characteristics of page,

www.manaraa.com

20

 which is globally predefined and independently from the request (Bani-Mohammad,

et al., 2010). Consequently, it may fail to allocate a job contiguously even a one

sufficient mesh is available. Figure 2.5 illustrates an allocation example of Paging

row-major (0).

Figure 2.3: Paging(0) using different indexing schemes: (a) Row-major

indexing, (b) Shuffled row-major, (c) snake-like indexing, and (d) shuffled

snake-like indexing.

www.manaraa.com

21

Figure 2.4: An allocation using Paging Row_major (0) strategy.

Multiple Buddy Strategy (MBS): The MBS (Lo, et al., 1997) is an extension of the

2D buddy strategy. The mesh is divided into distinct square sub-meshes with side

lengths equal to the powers of two upon initialization. The number of processors

requested by an incoming job is factorized into a base of four representation of

∑ 𝑑𝑖 × (2𝑖 × 2𝑖)
log 4 𝑝

𝑖=0
, where 0 ≤ 𝑑𝑖 ≤ 3. The request is then allocated to the mesh

according to the factorized number in which 𝑑𝑖 number of 2𝑖 × 2𝑖 blocks is required.

If a required block is unavailable, MBS recursively searches for a larger block and

repeatedly breaks it down into buddies until it produces blocks of the desired size. If

that fails, the requested block is then broken into four requests for smaller blocks

and the searching process repeats. MBS eliminates fragmentation, while still

maintaining contiguity within individual blocks (Lo, et al., 1997).

www.manaraa.com

22

A main drawback of the MBS is that it may fail to allocate an available sub-mesh

contiguously to a requested job because it is restricted to base 4 blocks of allocation.

An example of MBS allocation is shown in Figure 2.6.

Expanding Square Strategy (ESS): This strategy (Moghaddam and Naghibzadeh,

2006) introduced with the aim of minimizing internal and external message-passing

contention. ESS works as follows: when the system receives a job request, each idle

node in the mesh builds a square around itself and starts to expand it and in each

expansion, all the idle nodes are added to the cluster. If in the last expansion, the

number of idle nodes exceeded the number of requested processors, then the nodes

with minimum sum distance from all other allocated nodes in their corresponding

clusters are added and the job is assigned to these nodes. Figure 2.7 illustrates an

example of the ESS allocation.

Figure 2.5: An allocation using MBS allocation strategy.

www.manaraa.com

23

Figure 2.6: An allocation using ESS allocation strategy.

Greedy Available Busy List (GABL): In GABL strategy (Bani-Mohammad, et al.,

2007), when a parallel job is selected for allocation, a sub-mesh suitable for the entire

job is searched for. If such a sub-mesh is found, it is allocated to the job and

allocation is done. Otherwise, the largest free sub-mesh that can fit inside the request

job size is allocated. Then, the largest free sub-mesh whose side lengths do not

exceed the corresponding side lengths of the previously allocated sub-mesh is

searched for and allocated provided that this does not result in allocating more

processors than the requested size. This last step is repeated until the requested

number of processors is allocated. Allocated sub-meshes are kept in a busy list.

Each element in this list includes the id of the job the sub-mesh is allocated to. GABL

uses an efficient approach proposed in (Chiu and Chen, 1999), to facilitate the

detection of such available sub-meshes with low allocation overhead. GABL aims to

maintain a high degree of contiguity to decrease

www.manaraa.com

24

the number of allocated sub-meshes to a job and hence decreases the distance

traversed by a message, which can reduce message contention inside the network

(Bani-Mohammad, et al., 2007). Even though, GABL may allocate submeshes that

are far apart from each other. To illustrates how GABL allocates a job request,

consider the system state shown in Figure 2.8, and assume a job request of size 4 ×

4 arrives at the system, GABL always tries to allocate any job request contiguously.

It scans the mesh, searching for a free submesh of the requested size, in this case,

4 × 4. GABL failed to find such a contiguous submesh, then it starts by subtracting

one from the maximum side length of the requested submesh and this step is

repeated until it finds a suitable available submesh, in this case a 2 × 3 available

submesh of processors with the coordinates (6,0,7,2) is found, where the first two

coordinates specify the lower left corner of the submesh and the last two coordinates

specify the upper right corner of the submesh Then it continues to allocate another

two submeshes: (3,0,5,1) and (6,6,7,7,) as shown in Figure 2.8 by applying the steps

described above.

www.manaraa.com

25

Figure 2.7: an example of allocation using GABL allocation strategy.

2.2 Switching Method

The switching method refers to the method used to transfer a message from a source

to a destination usually through a series of intermediate nodes by removing the data

from the input channel and placing it on the output channel at each intermediate

node. The switching technique has a significant impact on the communication

latency in the direct network multicomputer systems. Among several switching

techniques that have been used in multicomputer systems, this section briefly

describes three most important ones: Store-and-forward (Kumar, et al., 2003),

Virtual cut-through (Drewes, 1996), and Wormhole switching (Ni and McKinley,

1993; Mohapatra, 1998).

www.manaraa.com

26

Store-and-forward switching: In store-and-forward switching, also called packet

switching, the message is divided into fixed-length packets that are independently

routed to their destination, since each node holds its destination address in its

header. Each intermediate node stores the entire packet before forwarding it to the

next node in its path. The major drawback of store-and-forward switching is that the

time required to transmit a packet from source to destination is proportional to the

number of traversed intermediate nodes. Furthermore, we need a buffer space to

hold packets at each intermediate node (Ni and McKinley, 1993; Mohapatra, 1998).

Virtual cut-through switching: Virtual cut-through (Drewes, 1996) has been

introduced as an enhancement of store-and-forward switching. Virtual cut-through

reduces the time and space overhead of storing the entire packet at each

intermediate node. In virtual cut-through, an intermediate node stores a packet only

if the next required channel is busy. This reduces the impact of the distance between

the communicating nodes on communication latency. However, a very large buffer

space is required at each node to store all blocked transient packets due to the

probability of blocking multiple messages at any node, and this leads to increase in

the implementation cost (Ni and McKinley, 1993; Mohapatra, 1998).

www.manaraa.com

27

Wormhole switching: Wormhole switching (also called wormhole routing (Duato,

Yalamanchili, and Ni, 1997)) is a variant of virtual cut-through technique that

eliminates the need for large buffer spaces and minimizes the sensitivity of the

communication latency to the distance between the communication nodes. In

wormhole switching, a packet is divided into fixed-size units called flits

(flow control unit), which is the smallest units of data transmission in wormhole

routing network. The header flit(s), which contains the routing information, headway

along the routing path and the remaining data flits follow it contiguously in a pipelined

fashion. When the header flit blocked due to resource contention (link or buffer), then

all trailing flits blocked and occupy the buffers at the intermediate nodes, typically,

one flit at each intermediate node. This can block other messages and further, it can

lead to a deadlock, where messages wait for each other in a cycle without being able

to move forward anymore. Deadlock prevention is a critical issue in wormhole

switching and it is usually achieved by suitable choice for routing function (Ni and

McKinley, 1993; Mohapatra, 1998).

Since wormhole routing pipelines packets during transmission, it can perform well

even in high-diameter networks, such the mesh (Min, 2003). Many experimental

machines such as the iWARP (Peterson, Sutton, and Wiley, 1991) and the MIT J-

machine (Noakes, et al., 1993), and commercial machines such as the Intel Paragon

(Intel Corporation, 1991), the IBM blueGene/L (Blumrich, et al., 2003),

www.manaraa.com

28

and the Cray XT3 (Cray, 2005) have used wormhole switching. Wormhole switching

has been used in this research when examining the performance of the allocation

strategies. The wormhole switching has been used in this research because it has

been used in the previous non-contiguous allocation strategies (Lo, et al., 1997;

Mache, et al., 1997; Bani-Mohammad, et al., 2007; Ababneh, 2008;Bani-

Mohammad, et al., 2010; Bani-Mohammad, et al., 2015).

2.3 Routing Algorithm

An efficient routing algorithm is critical to the performance of the parallel

multicomputer. A routing algorithm determines the path that a message follows from

its source to its destination. Routing algorithms can be classified as deterministic and

adaptive. Deterministic routing determines a unique path of the message according

to the source and destination address. Adaptive routing determines the path of the

message according to the current state of the network such as the presences of

failure or congestion and routes along alternative paths. When designing a routing

algorithm, deadlock handling should be considered (Ni and McKinley, 1993;

Mohapatra, 1998; Kumar, et al., 2003).

Dimension-order routing (Ni and McKinley, 1993; Mohapatra, 1998; Kumar, et al.,

2003) is a deterministic routing technique and it provides deadlock-free routing for

wormhole-routed networks; since messages' path cannot form a deadlock cycle. In

Dimension-ordered routing, a sent packet traverses along one dimension at a time

until it reaches the appropriate coordinate then it traverses along the next dimension

towards the destination.

www.manaraa.com

29

 Dimension-order routing in 2D mesh networks is referred to as 𝑋𝑌 routing, where

the packet first traverses along the 𝑋 dimension (the mesh width) until it reaches the

column of the destination node then it traverses in the 𝑌 dimension (the mesh height)

until it reaches the destination as depicted in Figure 2.9. 𝑋𝑌 routing is used in this

research when examining the performance of

the allocation strategies. 𝑋𝑌 routing has been used in this research because it has

been used in the previous non-contiguous allocation strategies (Lo, et al., 1997;

Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2010; Bani-

Mohammad, et al., 2015).

Figure 2.8: Dimension-ordered (𝑿𝒀) routing in an 𝟖 × 𝟖 2D mesh-connected

network.

www.manaraa.com

30

2.4 Communication Patterns

Processors allocated to a parallel job often communicate with each other according

to a given communication pattern (Lo, et al., 1997). When evaluating the non-

contiguous allocation, the important parameter to measure is the message

contention that caused by the exchanged messages and its impact on the overall

system performance. Four communication patterns have been considered in this

research work to evaluate the performance of

the proposed non-contiguous allocation algorithm and compared it with that of the

existing algorithms. The first communication pattern is one-to-all (ProcSimity

Manual, 1997), where a randomly selected process sends a message to each other

processors allocated to the same job. The second communication pattern is all-to-

all (ProcSimity Manual, 1997), where each processor in a job sends a message to

all other processors allocated to the same job. This communication pattern causes

much message contention and is considered as the weak point of the non-

contiguous allocation algorithms (Suzaki, et al., 1996). The third communication

pattern is random (ProcSimity Manual, 1997), where a message is sent between a

randomly selected pair of processors (source and destination) within the same job.

In the fourth communication pattern near-neighbor (Bani-Mohammad and Ababneh,

2013), each processor communicates with its neighbors.

www.manaraa.com

31

2.5 Assumptions

In the subsequent chapters, extensive simulation experiments will be presented to

evaluate the proposed allocation strategy (RBS). In this study, we make the following

assumptions which have been mostly used in the literature (Zhu, 1992; Babbar and

Krueger, 1994; Suzaki, et al., 1996; Mache, et al., 1997; Chang and Mohapatra,

1998; Ababneh, 2001; Yoo and Das, 2002; Seo, 2005; Bani-Mohammad, et al.,

2007; Ababneh, 2008; Bani-Mohammad, 2008; Bani-Mohammad, et al., 2010; Bani-

Mohammad, et al., 2015)

 The inter-arrival times of jobs are independent and follow an exponential

distribution.

 Jobs are scheduled on a First-Come-First-Served (FCFS) basis.

 The execution times of jobs depend on the time needed for flits to be routed

through the node, packet sizes, the number of message sent, message

contention and distances messages traverse.

 The side lengths of the sub-meshes requested by jobs are generated

independently and follow a given probability distribution. Two distributions

have been considered in this research. The first is the uniform distribution

over the range from 1 to the mesh side length (𝐿).

www.manaraa.com

32

 The second is the uniform-decreasing distribution. It is determined by four

probability 𝑝1, 𝑝2, 𝑝3, and 𝑝4, and four integers 𝑙1, 𝑙2, 𝑙3 and 𝑙4, where the

probability that the width (length) of a request falls in the ranges [1,𝑙1], [𝑙1 +

1,𝑙2], [𝑙2 + 1,𝑙3] and [𝑙3 + 1,𝑙4] is 𝑝1, 𝑝2, 𝑝3, and 𝑝4, respectively. The side

lengths within a range are equally likely to occur. For the simulation

experiments in this research work, 𝑝1 = 0.4, 𝑝2 = 0.2, 𝑝3 = 0.2, 𝑝4 = 0.2,

𝑙1 = 𝐿/8, 𝑙2 = 𝐿/4, 𝑙3 = 𝐿/2, and 𝑙4 = 𝐿. These distributions have often been

used in the literature (Zhu, 1992; Lo, et al, 1997; Chang and Mohapatra, 1998;

Chiu and Chen, 1999; Ababneh and Bani-Mohammad, 2003; Bani-

Mohammad, et al., 2006)

 Messages are transmitted inside the network using wormhole switching along

with XY routing.

 Messages are of a fixed length (i.e., a fixed number of flits). Moreover, the

number of messages that are generated by a given job are correlated to the

job size in the one-to-all, all-to-all and near-neighbor communication

patterns, since each job does exactly one iteration of the given

communication pattern, and it is only one message per job in the random

communication pattern.

www.manaraa.com

33

2.6 The Simulation Tool (ProcSimity Simulator)

Procsimity (Windisch, et al., 1995; ProcSimity Manual, 1997) is a well-known

software tool for research in the area of processor allocation and job scheduling for

distributed memory multicomputers. It has been developed at the university of

Oregon, and the developments efforts have been supported by OACIS and NSF

(Windisch, et al., 1995). The tool was written in the C programming language and

has been used extensively in evaluating processor allocation and job scheduling

strategies in the mesh-connected multicomputers. ProcSimity has been preferred

because it is open source and includes a detailed simulation of important operations

of multicomputers networks. Moreover, it has been extensively validated in

(Windisch, et al., 1995; ProcSimity Manual, 1997).

ProcSimity allows the user to test the performance of scheduling and allocation

algorithms on job streams comprising a spectrum of parallel applications.

The tool supports experimentation for highly parallel systems based on the mesh

and k-ary n-cube topologies (includes hypercube and torus), and for a range of flow

control and routing technologies. The overall purpose for ProcSimity is to provide a

convenient environment for performance analysis of processor allocation and job

scheduling algorithms. In particular, ProcSimity is designed to investigate some of

the key performance bottlenecks in the areas of scheduling and allocation, such as

fragmentation and communication overhead problems.

www.manaraa.com

34

 These areas of processor management have been shown to be critical for achieving

good price/performance ratios in highly parallel systems in a dynamic multi-user

environment. (Windisch, et al., 1995; ProcSimity Manual, 1997).

ProcSimity specifies the target machine environment including the network topology,

routing, and flow control mechanisms, and it provides the users with libraries of

predefined scheduling and allocation algorithms. In addition, a user can easily

develop and integrate its own allocation and scheduling algorithms and even a new

communication pattern into ProcSimity tool. Procsimity involves specification of the

simulation experiments; it supports both stochastic job streams as well as

communication patterns from actual parallel applications. The user can specify

detailed simulation of message-passing overhead at the flit level (Windisch, et al.,

1995; ProcSimity Manual, 1997).

2.7 Justification of the Method of Study

System performance can be generally, evaluated by using two techniques: analytical

modeling and simulation, in addition to conducting measurements on a real practical

system, which may be costly or does not permanently available. The level of the

desired accuracy is considered as one of the key consideration when adopting a

given evaluation technique. In general, analytical models have often low

requirements in terms of computation costs, but they often rely on many assumptions

and simplifications that restrict their applicability to a limited number of scenarios.

www.manaraa.com

35

 In contrast, simulation models can easily incorporate details to the desired level of

accuracy in order to mimic more closely the behavior of the real system. The

consequence of this is that simulation often require a longer time to develop and run

the code, compare to analytical modeling (Bani-Mohammad, 2008). However, as we

have used the ProcSimity simulator that has already been developed and

extensively validated (Windisch, et al., 1995; ProcSimity Manual, 1997), we have

easily integrated the suggested algorithm into the simulator. This has helped to

considerably cut down the development time and debugging of the code.

www.manaraa.com

36

Chapter Three

Row Based Strategy (RBS): A New Non-contiguous Processor Allocation

Algorithm for 2D Mesh-Connected Multicomputer

3.1 Introduction

Conventional allocation strategies (Li and Cheng, 1991; Zhu, 1992; Chuang and

Tzeng, 1994; Das Sharma and Pradhan, 1996; Ababneh, 2001, Ababneh, et al.,

2010) suggested for mesh-connected multicomputer are based on contiguous

allocation, where the processors are allocated to a parallel job only if they are

physically contiguous and form a shape that resembles the connecting network

topology. These allocation conditions could cause internal and external processor

fragmentation and degrade the overall system performance due to the inefficient

utilization of the system.

Non-contiguous allocation strategies (Lo, et al., 1997; Chang and Mohapatra, 1998;

Wu, et al., 2003; Moghaddam and Naghibzadeh, 2006; Bani-Mohammad, et al.,

2007; Ababneh, 2008; Bani-Mohammad, et al., 2015; Bani-Mohammad, 2017) for

mesh-connected multicomputers have been proposed with the aim of alleviating the

fragmentation problem by ignoring the contiguity conditions. In non-contiguous

allocation, a parallel job can be allocated to multiple disjoint available submeshes

instead of being queued waiting for a contiguous one to be available (Lo, et al., 1997;

Yoo and Das, 2002).

www.manaraa.com

37

Two main reasons have led to the adoption of non-contiguous allocation; the first

one is that the experimental evidence has shown that only slight improvement can

be obtained from refining the existing contiguous allocation strategies (Lo, et al.,

1997; Chang and Mohapatra, 1998), and the second is the advances in network

switching techniques and the emergence of wormhole routing (Ni and McKinley,

1993) which have made the network latency less sensitive to the distance between

the communicating nodes (Lo, et al., 1997; Chang and Mohapatra, 1998).

The non-contiguous allocation has improved the system utilization up to 78% (Wan,

et al., 1996; Lo, et al., 1997), this improvement can notably improve the overall

system performance such as the jobs turnaround times and the jobs finish times.

Even though, the non-contiguous allocation suffers from the problem of message

contention inside the network, and if the contention increased significantly, then it

would increase the communication latency and even would defeat the benefits of the

improved system utilization (Min and Mutka, 1994; Mache and Lo, 1997).

The existing non-contiguous allocation (Lo, et al., 1997; Mache et al., 1997; Chang

and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh, 2006; Bani-

Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015; Bani-

Mohammad, 2017)

www.manaraa.com

38

use various techniques, often based on artificial predefined geometric or arithmetic

patterns, to recognize and allocate the available submeshes. Generally, most of

them focus on maintaining a high degree of contiguity among the processors of the

allocated submeshes to a given job. Although, in the wormhole routing the distance

between the communicating nodes is not considered as

the major factor in communication latency. In addition, they generally aim to compact

different allocated submeshes in the hope of preserving larger available submeshes

for incoming job requests, although, the full system utilization is unachievable.

Motivated by the above observations, in this chapter we describe a new non-

contiguous allocation strategy for 2D mesh-connected multicomputers, referred to

as Row Based Strategy (RBS for short). RBS aims to alleviate the message

contention inside the network, which is the main drawback of the non-contiguous

allocation strategies.

3.2 Preliminary

The target system is a 2D mesh with size 𝑁 = 𝑊 × 𝐻, where 𝑊 is the width of the

mesh and 𝐻 is its height.

Each processor (node) is denoted by an ordered pair (𝑥, 𝑦), which are the

coordinates of that processor, where 0 ≤ 𝑥 < 𝑊 and 0 ≤ 𝑦 < 𝐻.

www.manaraa.com

39

Each processor is connected by a bidirectional communication link to its neighbors,

and each node except those at the edges is connected by four such links.

 Each row in the mesh is denoted by its 𝑦 coordinate as 𝑅(𝑦).

As shown in Figure 3.1, each block of consecutive rows is denoted by its beginning

and ending rows 𝑅(𝑏, 𝑒) respectively, where 0 ≤ 𝑏 < 𝐻 and 𝑏 ≤ 𝑒 < 𝐻.

 Figure 3.1: An example of an 𝟖 × 𝟖 mesh system

3.3 The Proposed Row Based Allocation Strategy (RBS)

The RBS allocation strategy classifies the incoming job requests according to the

requested submesh size into two categories: large and small. If the requested

submesh size is greater than the mesh width, it is considered large. Otherwise, it is

considered small.

www.manaraa.com

40

 The main purpose of this classification is to alleviate message contention among

large jobs by reducing the number of allocated processors to a large job in the rows,

which already contain processors allocated to other large jobs. Also, it tries initially

to allocate small jobs in the upper part of the mesh. Knowing that the messages of

two adjacent small jobs allocated next to each other in the same row would not

collide.

For a small job request, if the number of free processors in the mesh is sufficient to

accommodate the requested submesh size, then it is allocated using one of the two

different allocation methods, described below, according to the current allocation

state of the mesh.

Method S.1: If the incoming job request is small (i.e. the requested submesh size

𝑘 is less than or equal to the mesh width), the proposed strategy works as follows:

starts at the top row of the mesh downwards, trying to find a row with a sufficient

number of free processors to accommodate the requested job size. If found, then

the 𝑘 leftmost free processors at that row are allocated, and the allocation is done.

Method S.2: if a small job request cannot be allocated in a single row, then the

strategy allocates it as follows: starts at the top row downwards, and allocates the

rightmost free processors in the current row until the requested number of

processors is allocated,

www.manaraa.com

41

 if there are no more free processors remain in the current row and the required

number of processors is not yet allocated, then it steps down to the next lower row

in the mesh and continues allocating the same way until the requested number of

processors is allocated.

Method S.1 Example: Assume that the mesh shown in Figure 3.2 and a job

requests 4 processors, a 2 × 2 submesh, the strategy begins at top row, 𝑅(7), the

number of free processors is 2, which is less than the requested number of

processors, then it steps down to the next lower row, 𝑅(6), now the number of free

processors in this row is 5, which is sufficient to accommodate the requested size.

Then the 4 leftmost free processors at 𝑅(6) are allocated and the allocation is done.

Figure 3.2: Allocating processors to a job requests a 𝟐 × 𝟐 submesh using

the RBS.

www.manaraa.com

42

Method S.2 Example: Assume that the mesh shown in Figure 3.3 and a job

requests 7 processors, a 1 × 7 submesh. Since there is no a single row which

contains a sufficient number of free processors to accommodate the requested

number of processors, the strategy begins at top row, 𝑅(7), and allocates the

rightmost free processors which are 2, then it steps down to the next lower row, 𝑅(6)

, and allocates the only one free processor at that row, and it continues allocating

the same way until the requested number of processors are allocated.

Figure 3.3: Allocating processors to a job requests a 𝟏 × 𝟕 submesh using

the RBS.

For a large job request, if the number of free processors in the mesh is sufficient to

accommodate the requested submesh size, it is allocated using one of the three

different allocation methods, described below, according to the current allocation

state of the mesh.

www.manaraa.com

43

Initially, the strategy scans the mesh’s rows by starting at the bottom row upwards

and tries to find a block of free rows, 𝑅(𝑏, 𝑒), with a sufficient number of processors

to accommodate the requested submesh size. Also, for each block of free rows,

𝑅(𝑏, 𝑒), in the mesh, the strategy records the number of free processors in the rows

just above and beneath R(b,e), which are 𝑅(𝑒 + 1) and 𝑅(𝑏 − 1), respectively.

Method L.1: If there is a block of free rows 𝑅(𝑏, 𝑒) in the mesh with a sufficient

number of processors to accommodate the requested size, then they are allocated

to the requested job in an upwards row-major fashion, beginning at row 𝑅(𝑏), and

the allocation is done.

Method L.2: If there is no a block of free rows 𝑅(𝑏, 𝑒) in the mesh with sufficient

number of processors to accommodate the requested job size, then the proposed

strategy checks if there is any block of free row(s) 𝑅(𝑏, 𝑒) with a number of free

processors in (𝑅(𝑏, 𝑒) + 𝑅(𝑒 + 1) + 𝑅(𝑏 − 1)) greater than or equal to the requested

submesh size, if such block is found then it starts at row 𝑅(𝑏 − 1) to allocate 𝑥

rightmost free processors at that row, where 𝑥 is evaluated as follows:

𝑥 = 𝑀𝑎𝑥 (𝑗𝑜𝑏 𝑠𝑖𝑧𝑒 − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑖𝑛(𝑅(𝑏, 𝑒) + 𝑅(𝑒 + 1))), 0),

then it continues to the next upper row, 𝑅(𝑏), and allocates processors in an upwards

row-major fashion and the allocation is done. If there are more than one such block

in the mesh, then it chooses the one with the maximum free processors in 𝑅(𝑒 + 1).

www.manaraa.com

44

Method L.3: If the above two methods failed to allocate the requested submesh size,

then it starts at the bottom row upwards allocating the requested number of free

processors in a row-major fashion and the allocation is done.

Method L.1 example: Assume that the mesh shown in Figure 3.4 and a job requests

20 processors, a 5 × 4 submesh. RBS scans the mesh rows, searching for a block of

free rows which has a number of free processors greater than or equal to 20, since

the free rows block, 𝑅(4,6), has a number of free processors equal to 24 which is

sufficient to accommodate the requested size. Then it starts at the beginning row,

𝑅(4), allocating the requested number of processors in a row major fashion.

Figure 3.4 :Allocating processors to a job requests a 𝟓 × 𝟒 submesh using the

RBS.

www.manaraa.com

45

Method L.2 example: Assume that the mesh shown in Figure 3.5 and a job requests

28 processors, a 7 × 4 submesh. Since the mesh does not include any block of free

rows with a sufficient number of processors to accommodate the requested job size,

RBS checks if there is any block of free rows, 𝑅(𝑏, 𝑒), such that the number of free

processors in 𝑅(𝑏, 𝑒) + 𝑅(𝑏 − 1) + 𝑅(𝑒 + 1) is sufficient to accommodate the requested

submesh size, in this case it is 𝑅(3,5), where the number of free processors in

𝑅(3,5) + 𝑅(2) + 𝑅(6) = 24 + 4 + 3 = 31, which is sufficient to accommodate the

requested submesh size. therefore, the allocation here is by using method L.2, the

allocation begins at 𝑅(2) by allocating 𝑀𝑎𝑥 ((28 – (24 + 3)), 0) = 1 rightmost free

Figure 3.5: Allocating processors to a job requests a 𝟕 × 𝟒 submesh using the

RBS.

Two extra examples that illustrate large job allocation using method L.2 are depicted

in Figures 3.6 and 3.7.

www.manaraa.com

46

Figure 3.6: Allocating processors to a job requests a 𝟕 × 𝟒 submesh using the

RBS.

Figure 3.7: Allocating processors to a job requests a 𝟓 × 𝟐 submesh using

the RBS.

www.manaraa.com

47

Method L.3 example: Assume that the mesh shown in Figure 3.8 and a job requests

16 processors, an 8 × 2 submesh. Since the conditions of methods L1 and L2 do not

match, method L.3 is considered by starting at 𝑅(0), allocating the requested number

of processors in a row-major fashion

Figure 3.8: Allocating processors to a job requests a 𝟓 × 𝟐 submesh using the

RBS.

www.manaraa.com

48

Procedure RBS_Allocate(a,b):

{
Job_size = a×b.
Total_Allocated = 0.
r = H.
Step 1. If (number of free processors<Job_Szie)
 return failure.
Step 2. If (Job_size > W)
 go to Step 9.
Step 3. r = r-1.
Step 4. If (number of free processors in R(r)≥ Job_size)

 {

}

allocate (Job_size) rightmost free processor in R(r).
return success.

Step 5. If (r>0)
 go to Step 3.
Step 6. r = H-1.
Step 7. if (number of free processors in R(r) > 0)
 {

}

allocate rightmost free processor in R(r).
Total_allocated = Total_allocated+1.

 else r=r-1.

Step 8. If (Total_Allocated = Job_Size)
 return success.
 else
 go to Step 7.

Step 9. search the mesh rows from bottom row upwards for a block of free rows,
R(b,e), such that number of free processors in R(b,e) ≥ Job_Size.

Step
10.

if (a block of free rows R(b,e) is found, where the number of free processors in
R(b,e) ≥ Job_size)

 {

}

allocate the requested number processors in a row-major fashion,
starting at R(b).
return success.

Step
11.

if (a block of free rows R(b,e) is found, where number of free processors in
(R(b,e)+R(b-1)+R(e+1)) ≥ Job_size.)

else

x=max (Job_size - number of free processors in (R(b,e) + R(e)) , 0
).

go to Step 14.

Step
12.

allocate (x) rightmost free processors in R(b-1).

Step
13.

allocate (Job_size - x) processors in a row-major fashion starting at R(b).
return success.

Step
14.

allocate the requested number of processors in a row-major fashion starting at
R(0).
return success.

} end procedure

Figure 3. 9: Outline of the RBS allocation algorithm.

www.manaraa.com

49

Procedure RBS_Deallocate(a,b):

{

 Job_id = id of the departing job.

 for each row, R(r), in mesh

 for each node in R(r)

 if (node's id =

Job_id)

 {

}

remove node's id.

add node to

freeNodeList[r].

//an array of ordered lists that keep

track of all free nodes in each row.

} end procedure

Figure 3.10: Outline of the RBS deallocation algorithm.

3.4 Complexity Analysis for RBS Allocation Strategy

RBS strategy maintains an array of ordered lists, Free Node Lists (FNL), that keep

track of all the unallocated nodes and their count for each row in the mesh. As

example, assume the allocation state of the mesh shown in Figure 3.1, the

corresponding array of the FNL is represented as shown in Figure 3.11.

Figure 3.11: An example of Free Node Lists.

www.manaraa.com

50

3.4.1 The Allocation Time Complexity

The initial scanning operation only requires checking the count variable in the

elements of the FNL array. In the worst case, it requires traversing all elements of

the FNL array, where the size of the FNL array is equal to mesh height (𝐻). Thus,

the time complexity for scanning operation is 𝑂(𝐻).

The allocation operation for a job requests 𝑘 processors involves removing 𝑘 entry

from 𝑟 ordered lists of the FNL array, where 𝑟 is the number of rows to be traversed

to allocate the requested number of processors. Since removing an entry form the

front or the back of an ordered list takes 𝑂(1) time, thus the allocation time

complexity of RBS is 𝑂(𝑟 × 𝑘). In the worst case (allocating a job of size 𝑊 × 𝐻), it is

𝑂(𝐻. 𝑊) or 𝑂(𝑁), where 𝑊, 𝐻, and 𝑁 are the width, the height and the size of the

mesh, respectively.

3.4.1 The Deallocation Time Complexity

The deallocation operation traverses all the nodes in every row in the mesh and

compare the id of the allocated node with the id of the departing job. If the id is

matched, then the job_id property of the node is reset and an entry containing the

coordinates of the freed node is inserted into the corresponding ordered list in the

FNL array (i.e., FNL[𝑦- coordinate of the freed node]). The worst case in RBS occurs

when deallocating a job of size 𝑊 × 𝐻. Since inserting an entry into an order list of

size 𝑊 takes 𝑂(𝑊) time complexity,

www.manaraa.com

51

then inserting 𝑊 elements into the same list takes 𝑂(𝑊 × 𝑊). Repeating this

operation in every ordered list in the FNL array would result in 𝑂(𝐻 × 𝑊 × 𝑊) or

𝑂(𝑊 × 𝑁) time complexity, where 𝑊, 𝐻, and 𝑁 are the width, the height and the size

of the mesh, respectively.

www.manaraa.com

52

Chapter Four

Simulation Results

Extensive simulation experiments have been conducted to evaluate the performance

of the proposed non-contiguous allocation strategy, Row Based Strategy (RBS), and

compare it with the performance of the existing well-known non-contiguous

allocation strategies Paging (Lo, et al., 1997), MBS (Lo, et al., 1997) and GABL

(Bani-Mohammad, et al., 2007). The Paging and MBS allocation strategies have

been chosen since they have been shown to perform well in (Lo, et al., 1997), and

the same thing for GABL, as it has been shown to perform well in (Bani-Mohammad,

et al., 2007; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al., 2015). The

performance of the contiguous First Fit (FF) (Zhu, 1992) allocation strategy has been

included in the comparison as a representative of the contiguous allocation

strategies since it has been shown an average performance in comparison with other

allocation strategies in its class (Lo, et al., 1997). We have implemented the

proposed allocation and deallocation algorithms, in the C programming language,

and integrated the software into the ProcSimity well-known simulation tool for

processor allocation and job scheduling in parallel systems (Windisch, et al., 1995;

ProcSimity Manual, 1997).

The mesh system modeled in this research is a 2D square mesh with a side length

𝐿. System load is varied according to the frequency of job arrivals which is randomly

modeled by an exponential distribution with a mean of average inter-arrival

www.manaraa.com

53

time value. System load is defined as the inverse of mean inter-arrival time. The jobs

are served according to First-Come-First- Served (FCFS) scheduling policy. FCFS

has been used in this research because it is fair and because we are intended to

evaluate and compare the performance of the allocation strategies. The job

execution time is the time needed by a job for completion starting from the time of

allocation, where job execution time depends on the time needed for flits to be routed

through the nodes, packet sizes, the number of messages to be sent, the message

contention inside the network and the distances that the messages traverse (Bani-

Mohammad, 2008). The side lengths of the sub-meshes requested by jobs are

generated independently and follow a given probability distribution. As reported in

Chapter 2, Section 2.5, two distributions have been considered in this research. The

first is the uniform distribution over the range from 1 to the mesh side length 𝐿. The

second is the uniform-decreasing distribution. It is determined by four probability 𝑝1,

𝑝2, 𝑝3, and 𝑝4, and four integers 𝑙1, 𝑙2, 𝑙3 and 𝑙4, where the probability that the width

(length) of a request falls in the ranges [1,𝑙1], [𝑙1 + 1,𝑙2], [𝑙2+1,𝑙3] and [𝑙3+1,𝑙4] is 𝑝1,

𝑝2, 𝑝3, and 𝑝4, respectively. The side lengths within a range are equally likely to

occur. For the simulation experiments in this research work, 𝑝1 = 0.4, 𝑝2 = 0.2, 𝑝3 =

0.2, 𝑝4 = 0.2, 𝑙1 = 𝐿/8, 𝑙2 = 𝐿/4, 𝑙3 = 𝐿/2, and 𝑙4 = 𝐿. These distributions have

often been used in the literature (Zhu, 1992; Lo, et al., 1997; Chang and Mohapatra,

1998; Chiu and Chen, 1999; Ababneh and Bani-Mohammad, 2003; Bani-

Mohammad, et al., 2006; Bani-Mohammad, et al., 2010).

www.manaraa.com

54

The interconnection network uses wormhole routing (Ni and McKinley, 1993;

Mohapatra, 1998) along with dimension-order routing (𝑋𝑌 routing) (Ni and McKinley,

1993; Mohapatra, 1998). Flits are assumed to take one time unit to move between

two adjacent nodes, and ts time units to be routed through a node. Packet sizes are

represented by Plen. As previously reported in Chapter 2, Section 2.4, processors

allocated to a parallel job communication with each other according to a given

communication pattern. Four communication patterns have been considered in this

research work. The first communication pattern is one-to-all (ProcSimity Manual,

1997), where a randomly selected process sends a message to each other

processors allocated to the same job. The second communication pattern is all-to-

all (ProcSimity Manual, 1997), where each processor in a job sends a message to

all other processors allocated to the same job. This communication pattern causes

much message contention and is considered as the weak point of the non-

contiguous allocation algorithms (Suzaki, et al., 1996). The third communication

pattern is random (ProcSimity Manual, 1997), where a message is sent between a

randomly selected pair of processors (source and destination) within the same job.

In the fourth communication pattern, near-neighbor (Bani-Mohammad and Ababneh,

2013), each processor communicates with its neighbors. The number of messages

that are generated by a job is correlated to the job size in the one-to-all, all-to-all and

near-neighbor communication patterns, since each job does exactly one iteration of

the given communication pattern, and it is only one message per job in the random

communication pattern.

www.manaraa.com

55

The performance figures presented in the following sections in this chapter adopt the

following parameters: the mesh size is a 16 × 16, ts = 3 time units, Plen = 8 flits.

Simulation parameters are illustrated in Table 4.1. It is worth noting that most of the

values of these parameters have been adopted in the literature (Zhu, 1992; Babbar

and Krueger, 1994; Suzaki, et al., 1996; Lo, et al., 1997; Wu, et al., 2003; Bani-

Mohammad, et al., 2006; Bani-Mohammad, et al., 2010) and have been

recommended in (ProcSimity Manual, 1997).

Table 4. 1: The System Parameters used in the Simulation Experiments.

Simulation Parameter Value

Dimensions of the Mesh 16 × 16

Packet Length 8 flits

Flow Control Mechanism Wormhole Routing

Routing Delay 3 time units

Router Type Mesh 𝑋𝑌 Routing

Allocation Strategy RBS, GABL, MBS, Paging(0), and FF

Scheduling Strategy FCFS

Job Size Distribution

Uniform: Job widths and lengths are uniformly

distributed over the range from 1 to the mesh

side lengths 𝐿.

Uniform Decreasing: Represents the case

where most jobs are small relative to the size

of the system.

Inter-arrival Time Exponential with different values for mean.

The values are determined through

experimentation with the simulator, ranged

from lower values to higher values.

Mean Time between Sends 0.0

www.manaraa.com

56

Communication Pattern One-to-all, all-to-all, Random, and Near

Neighbor.

Messages per job

Messages per job are correlated to the job

size, since each job does exactly one iteration

of the given communication pattern, except

for Random communication pattern, where

the number of messages per job is only one.

Number of Runs The number of runs should be enough so that

the confidence level is 95% and the relative

errors are below 5% of the means. The

number of runs ranged from dozens to

thousands.

Number of Jobs per Run 1000

Each simulation run consists of 1000 completed jobs. Simulation experiments are

repeated for independent runs until the confidence level reaches 95% and the

relative errors do not exceed 5%.

The main performance parameters used are the average turnaround time of jobs

and mean system utilization. The turnaround time of a job is the time that the job

spends in the system from arrival to departure. The system utilization is the

percentage of processors that are utilized over a given period of time. The important

independent variable in the simulation is the system load. It is defined as the inverse

of the mean inter-arrival time of jobs. Its range of values from low to heavy loads has

been determined through experimentation with the simulator allowing each allocation

strategy to reach its upper limits of utilization. In the figures that are presented below,

the x-axis represents the system load while the y-axis represents the results of the

performance metric of interest (Bani-Mohammad, 2008).

www.manaraa.com

57

4.1 Turnaround Time

In Figures 4.1 and 4.2, the average turnaround times of jobs are plotted against the

system load for the one-to-all communication pattern. The results reveal that in most

cases, the performance of RBS is relatively better than that of the other non-

contiguous allocation strategies considered in this research, and they are all

substantially superior to the FF contiguous allocation strategy for both job

distributions considered in this research. This is because that the non-contiguous

allocation strategies considered in this research eliminate both internal and external

fragmentation, hence, they achieve better system utilization and that can notably

improve the system performance in terms of jobs turnaround times, where this

improvement in system utilization outbalanced the impact of the external message

contention encountered in non-contiguous allocation. For example, in Figure 4.1, the

performance of RBS is almost the same as Paging(0), barely 1% in favor for GABL,

and about 2% in favor for RBS compared to MBS, under the job arrival rate of 0.0009

jobs/time unit. However, the performance difference is very clear when comparing

with the contiguous FF strategy as it reaches to 54% in favor for the non-contiguous

RBS strategy, under the job arrival rate of 0.0009 jobs/time unit.

Although the average turnaround times of all non-contiguous and contiguous

allocation strategies are improved when uniform decreasing distribution is used, the

relative performance remains almost the same as when the uniform distribution is

used.

www.manaraa.com

58

 This improvement in turnaround times is due to the increased probability of small

jobs to be allocated. Moreover, for non-contiguous allocation strategies, the

message contention decreased since, in the one-to-all communication pattern, the

number of messages for a job is correlated to the job size. For example, in Figure

4.2, the performance of RBS is almost the same as MBS, and the relative difference

in performance in favor for RBS are 1%, 2%, and 51%, compared to GABL,

Paging(0), and FF, respectively, under the job arrival rate of 0.005 jobs/time unit.

Although in one-to-all communication pattern, the number of messages is

considerable, but, the contention produced here, due to the relatively small packet

size (8 flits) used, does not distinguish the superior contention alleviation feature of

RBS, which is more notable when the all-to-all communication pattern is used.

Figure 4.1: Average turnaround time vs. system load for the one-to-all

communication pattern and uniform side lengths distribution in a 𝟏𝟔 × 𝟏𝟔
mesh.

0

50000

100000

150000

200000

250000

300000

350000

0 . 00010 0 . 00020 0 . 00030 0 . 00040 0 . 00050 0 . 00060 0 . 00070 0 . 00080 0 . 00090

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

59

Figure 4.2: Average turnaround time vs. system load for the one-to-all

communication pattern and uniform decreasing side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh.

In Figures 4.3 and 4.4, the average turnaround times of jobs are plotted against the

system load for the all-to-all communication pattern. The results reveal that RBS

performs much better than all other contiguous and non-contiguous allocation

strategies for both job size distributions considered in this research. This is because

RBS is better than the previous non-contiguous allocation strategies at alleviating

message contention. In Figure 4.3, for example, the average turnaround times of

RBS are 72%, 60%, 31%, and 54% of the average turnaround times of GABL,

Paging(0), MBS, and FF, respectively, under the job arrival rate of 0.00009 jobs/time

units. Again, as seen in one-to-all, the average turnaround times for all allocation

strategies are improved when uniform decreasing distribution is used, however, the

relative performance of the allocation strategies remains almost the same for both

job size distributions. In Figure 4.4, for example, the average turnaround times of

0

20000

40000

60000

80000

100000

120000

0 . 00100 0 . 00150 0 . 00200 0 . 00250 0 . 00300 0 . 00350 0 . 00400 0 . 00450 0 . 00500

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

60

RBS are 70%, 77%, 52%, and 62% of the average turnaround times of GABL,

Paging(0), MBS, and FF, respectively, under the job arrival rate of 0.0005 jobs/time

units.

It is worth noting that the FF contiguous allocation strategy substantially outperforms

the non-contiguous allocation MBS strategy for uniform side lengths distribution and

performs better than it for uniform decreasing distribution. This is because that all-

to-all communication pattern produces much message contention and considered

as the weak point of the non-contiguous allocation strategies (Suzaki, et al., 1996),

where the number of messages per job increases dramatically as the job size

increases. If the message contention increases significantly, this would increase the

delay, and defeat the gain of the improved system utilization; and consequently,

degrades the system performance in terms of jobs turnaround time (Min and Mutka,

1994; Mache and Lo, 1997). This is the case here with MBS, because its main

drawback, as previously discussed in Chapter 2, section 2.1.2, is that the submesh

allocation is restricted to a base 4 square blocks, therefore, it may fail to allocate a

requested submesh contiguously even if a one exist, and may unnecessarily divide

a submesh request and allocate the parts far apart of each other, especially for large

jobs, and this can seriously increase the message contention.

www.manaraa.com

61

Figure 4.3: Average turnaround time vs. system load for the all-to-all

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔
mesh.

Figure 4.4: Average turnaround time vs. system load for the all-to-all
communication pattern and uniform decreasing side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh.

0

500000

1000000

1500000

2000000

2500000

3000000

0 . 00001 0 . 00002 0 . 00003 0 . 00004 0 . 00005 0 . 00006 0 . 00007 0 . 00008 0 . 00009

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

0

100000

200000

300000

400000

500000

600000

700000

800000

0 . 00010 0 . 00015 0 . 00020 0 . 00025 0 . 00030 0 . 00035 0 . 00040 0 . 00045 0 . 00050

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

62

In Figures 4.5 and 4.6, the average turnaround times are plotted against the system

load for the random communication pattern. The results reveal that in most cases,

the performance of RBS is relatively better than that of the other non-contiguous

strategies and they are all outperform the FF contiguous allocation strategy. In

Figure 4.5, for example, when the job arrival rate is 0.1 jobs/time unit, the relative

difference in turnaround times between RBS and GABL is 1% in favor for GABL, and

are 3%, 2% and 36% in favor for RBS compared to Paging(0), MBS, and FF,

respectively. Figure 4.6 shows a slight relative performance improvement for RBS

when the uniform decreasing distribution is used. This is because of the increased

probability of small jobs (relative to mesh size) when using this distribution, and since

RBS, generally, allocates the jobs along the rows of the mesh, and relatively small

jobs can be laid out in a less number of lines, which decreases the contention among

different jobs' messages. Moreover, RBS has the ability to allocate jobs that are

smaller than or equal to the mesh width in a way that reduces the contention among

different small jobs. For example, when the job arrival rate is 0.25, the relative

differences in job turnaround times in favor for RBS are 9%, 7%, 4% and 51%,

compared to GABL, Paging(0), MBS, and FF, respectively.

www.manaraa.com

63

Random communication pattern can only give a glance about the ability of the non-

contiguous allocation strategies to alleviate the message contention. However, the

contention produced when adopting the random communication pattern is not

sufficient to distinguish among the non-contiguous allocation strategies. This is

because for each job, a one message is sent from a randomly selected source node

to another randomly selected destination node within the same job.

Figure 4.5: Average turnaround time vs. system load for the random

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔
mesh.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 . 01111 0 . 01250 0 . 01429 0 . 01667 0 . 02000 0 . 02500 0 . 03333 0 . 05000 0 . 10000

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

64

Figure 4.6: Average turnaround time vs. system load for the random
communication pattern and uniform decreasing side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh.

In Figures 4.7 and 4.8, the average turnaround times are plotted against the system

load for the near neighbor communication pattern. The performance of RBS is not

better than that of the other contiguous and non-contiguous allocation strategies,

however, in Figure 4.7, its performance is very close to the performance of Paging(0)

and MBS, in Figure 4.8, it is very close to the performance of Paging(0). This is

because in this communication pattern, each node allocated to a job communicates

with its neighbors (left, right, up, down) that are allocated to the same job, and this

is suitable for the strategies that maintain a high degree of contiguity among the

allocated processors for a given job and form rectangular shapes for the allocated

submeshes. Figure 4.7 shows that the FF contiguous allocation strategy

substantially outperforms all non-contiguous allocation strategies.

0

500

1000

1500

2000

2500

0 . 05000 0 . 05556 0 . 06250 0 . 07143 0 . 08333 0 . 10000 0 . 12500 0 . 16667 0 . 25000

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

65

This is because, in FF, the allocated submeshes for jobs are contiguous and form

rectangular shapes, therefore, no external contention is encountered here. In

addition, it is notable that the non-contiguous GABL allocation strategy performs

better than other non-contiguous allocation strategies since it combines the desirable

features of both contiguous and non-contiguous allocation while it allocates

submeshes in a rectangular form and tries to maintain a high degree of contiguity

among the processors in the allocated submeshes. The same relative performance

can be seen in Figure 4.8 when the uniform decreasing distribution is used, however,

the relative performance differences are less severe.

Figure 4.7: Average turnaround time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a 𝟏𝟔 × 𝟏𝟔
mesh.

0

20

40

60

80

100

120

140

160

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 . 001110 . 001250 . 001430 . 001670 . 002000 . 002500 . 003330 . 005000 . 010000 . 01111

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

Se
co

n
d

ar
d

y
ax

is
fo

r
FF

 b
e

ac
u

se
 o

f
th

e
 s

m
al

l v
al

u
e

s

www.manaraa.com

66

Figure 4.8: Average turnaround time vs. system load for the near neighbor
communication pattern and uniform decreasing side lengths distribution in a

𝟏𝟔 × 𝟏𝟔 mesh.

4.2 System Utilization

Figures (4.9-4.18) depict the mean system utilization of the investigated allocation

strategies (RBS, GABL, Paging(0), MBS, FF) for the four communication patterns

and the two job size distributions considered in this research work. The load values

ranged from moderate to heavy loads, where heavy loads cause the waiting queue

to be filled very early which allows the allocation strategies to reach its upper system

utilization limit. The non-contiguous allocation strategies achieve a mean system

utilization of 76% to 78%, and 81% to 85%, for uniform and uniform decreasing job

size distributions, respectively, while the contiguous FF strategy cannot exceed 63%

utilization for both job size distribution.

0

20

40

60

80

100

120

140

160

0

5000

10000

15000

20000

25000

30000

0 . 004000 . 004440 . 005000 . 005710 . 006670 . 008000 . 010000 . 013330 . 020000 . 04000

A
V

ER
A

G
E

TU
R

N
A

R
O

U
N

D
 T

IM
E

LOAD

RBS GABL PAGING MBS FF

Se
co

n
d

ar
d

y
ax

is
fo

r
FF

 b
e

ac
u

se
 o

f
th

e
 s

m
al

l v
al

u
e

s

www.manaraa.com

67

This is because contiguous allocation causes high external fragmentation since the

allocation of a requested submesh requires contiguity among its processors and a

shape that resembles the connected network topology; these conditions reduce the

chance of successful allocation and consequently reduce the mean system

utilization. At heavy load values, the mean system utilization for the non-contiguous

allocation strategies are approximately the same for both job size distributions. This

is because the non-contiguous allocation strategies have the same ability to

eliminate internal and external processor fragmentation. They always succeed to

allocate processors to a requested job if there are enough free processors.

It is worth noting that a high mean system utilization rate for an allocation strategy at

a given load value may be caused by high message contention which increases the

communication delay and makes the jobs to stay a longer time in the system

. As an example, in all-to-all communication pattern, MBS has recorded the highest

mean system utilization at moderate system loads, while in the corresponding

turnaround time it is the worst.

www.manaraa.com

68

Figure 4.9: Mean system utilization vs. system load for the one-to-all

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔
mesh.

Figure 4.10 Mean system utilization vs. system load for the one-to-all
communication pattern and uniform decreasing job side lengths distribution

in a 𝟏𝟔 × 𝟏𝟔 mesh.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 0001 0 . 0002 0 . 0003 0 . 0004 0 . 0005 0 . 0006 0 . 0007 0 . 0008 0 . 0009

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 0010 0 . 0015 0 . 0020 0 . 0025 0 . 0030 0 . 0035 0 . 0040 0 . 0045 0 . 0050

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

69

Figure 4.11: Mean system utilization vs. system load for the all-to-all

communication pattern and uniform job side lengths distribution in a 𝟏𝟔 × 𝟏𝟔
mesh.

Figure 4.12: Mean system utilization vs. system load for the all-to-all
communication pattern and uniform decreasing job side lengths distribution

in a 𝟏𝟔 × 𝟏𝟔 mesh.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 00001 0 . 00002 0 . 00003 0 . 00004 0 . 00005 0 . 00006 0 . 00007 0 . 00008 0 . 00009

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 00010 0 . 00015 0 . 00020 0 . 00025 0 . 00030 0 . 00035 0 . 00040 0 . 00045 0 . 00050

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

70

Figure 4.13: Mean system utilization vs. system load for the random
communication pattern and uniform decreasing job side lengths distribution

in a 𝟏𝟔 × 𝟏𝟔 mesh.

Figure 4.14: Mean system utilization vs. system load for the random
communication pattern and uniform decreasing job side lengths distribution

in a 𝟏𝟔 × 𝟏𝟔 mesh.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 01111 0 . 01250 0 . 01429 0 . 01667 0 . 02000 0 . 02500 0 . 03333 0 . 05000 0 . 10000

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 05000 0 . 05556 0 . 06250 0 . 07143 0 . 08333 0 . 10000 0 . 12500 0 . 16667 0 . 25000

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

71

Figure 4.15: Mean system utilization vs. system load for the near neighbor
communication pattern and uniform decreasing job side lengths distribution

in a 𝟏𝟔 × 𝟏𝟔 mesh.

Figure 4.16: Mean system utilization vs. system load for the near neighbor
communication pattern and uniform decreasing job side lengths distribution

in a 𝟏𝟔 × 𝟏𝟔 mesh.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 00111 0 . 00125 0 . 00143 0 . 00167 0 . 00200 0 . 00250 0 . 00333 0 . 00500 0 . 01000 0 . 01111

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 . 00400 0 . 00444 0 . 00500 0 . 00571 0 . 00667 0 . 00800 0 . 01000 0 . 01333 0 . 02000 0 . 04000

U
TI

LI
ZA

TI
O

N

LOAD

RBS GABL PAGING MBS FF

www.manaraa.com

72

4.3 Conclusion

This chapter has investigated the performance merits of the non-contiguous

allocation in the 2D mesh network. To this end, we have suggested a new non-

contiguous allocation strategy, referred to as Row Based Strategy (RBS for short),

which differs from the previous non-contiguous allocation strategies in the method

used to allocate different submeshes for the job requests according to their sizes.

RBS classifies the incoming job requests according to their sizes into two categories:

large and small, where a job is considered large if the number of requested

processors is greater than the mesh width, otherwise, it is considered small. The

main goal of this classification is to reduce the contention among messages of

different jobs by minimizing the number of processors allocated to a large job in the

rows which already contain processors allocated to another large job. Also, it tries to

allocate the small jobs in the upper part of the mesh, knowing that the messages of

two small jobs allocated next to each other in the same row would not collide.

 The performance of RBS has been compared against that of the existing non-

contiguous and contiguous allocation strategies. Simulation results have shown that

RBS can significantly improve the performance despite the external contention

caused by interference among messages of different jobs. RBS also achieves

efficient system utilization compared to the contiguous strategies, due to its ability to

eliminate internal and external processor fragmentation.

www.manaraa.com

73

 The results have also revealed that, RBS is superior to the previous well known non-

contiguous allocation strategies, such as GABL, Paging(0), and MBS in terms of

turnaround time for

 the all-to-all communication pattern, which is considered as the weak point of the

non-contiguous allocation strategies. This is because all-to-all communication

pattern produces intensive messages and hence increases the message contention

and consequently increases the communication delay. The RBS superiority here is

due to its merit at alleviating the message contention inside the network, which can

significantly improve the average turnaround times of the jobs.

The results have also shown that the performance of RBS is relatively better than

that of the previous non-contiguous allocation strategies for one-to-all and random

communication patterns in most cases. However, it is not better than that of the other

contiguous and non-contiguous strategies when the near neighbor communication

pattern is used, because the privilege in this communication pattern is for the

strategies that maintain a high degree of contiguity and maintain a rectangular shape

of the allocated submeshes.

www.manaraa.com

74

Chapter Five

Conclusion and Future Work

5.1 Conclusion

Parallel computers have been considered as one of the most powerful computing

platforms that support various types of large and complex applications in fields such

as engineering, sciences, and many others. Distributed-memory multicomputers are

an important class of parallel computers as they offer a cost-effective alternative of

traditional supercomputers (Foster, 1995; Kumar, et al., 2003). Many topologies

have been suggested for the multicomputer networks, yet, the mesh topology has

gained much popularity, because of its simplicity, regularity, scalability, and partition-

ability. Moreover, many applications can be mapped very naturally into the mesh

topology, such as matrix computation, image processing, and many other practical

applications (Babbar and Krueger, 1994; Foster, 1995; Das Sharma and Pradhan,

1996; Chang and Mohapatra, 1998; Yoo and Das, 2002; Kumar, et al., 2003). Mesh

topology has been adopted in many commercial and experimental multicomputers.

The Intel Paragon (Intel Corporation, 1991), the Delta Touchstone (Intel Corporation,

1991), and the iWARP (Peterson, et al., 1991) are examples of 2D mesh-connected

multicomputers. Examples of 3D mesh-connected multicomputers include the MIT

J-machine (Noakes, et al.), the IBM blueGene/L (Blumrich, et al., 2003), and the

Cray XT3 (Cray, 2005).

www.manaraa.com

75

Many research studies have been investigated the processor allocation in

distributed-memory multicomputers, especially those based on mesh network (Li

and Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Das Sharma and Pradhan,

1996; Lo, et al, 1997; Chang and Mohapatra, 1998; Ababneh, 2001; Wu, et al., 2003;

Moghaddam and Naghibzadeh, 2006; Bani-Mohammad, et al., 2007; Ababneh,

2008; Ababneh, et al., 2010; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al.,

2015; Bani-Mohammad, 2017). Processor allocation strategies can be mainly

classified into two groups: contiguous and non-contiguous. In contiguous allocation

strategies (Li and Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Das Sharma

and Pradhan, 1996; Ababneh, 2001; Ababneh, et al., 2010), the allocated

processors must be physically contiguous and resemble the shape of the underlying

network. The main goal of this type of allocation is to alleviate the external message

contention, since only messages of the same job are expected within an allocated

submesh, and to decrease the distances among the processors allocated to the

same job. As a consequence of these allocation limitations, inefficient system

utilization is expected due to the high processor fragmentation. Processor

fragmentation can be classified into two types: internal and external (Das Sharma

and Pradhan, 1996; Lo, et al., 1997; Chang and Mohapatra, 1998; Seo, 2005).

Internal fragmentation occurs when a requested job is allocated more processors

than it is requested, the extra allocated processors are wasted and not used in the

real computation. External fragmentation occurs when a job request cannot be

allocated because of the contiguity and shapes allocation conditions, even that the

requested number of processors is available.

www.manaraa.com

76

Two main reasons have led to the adoption the non-contiguous allocation as a

plausible solution to the processor fragmentation problem: the first one is that the

experimental evidence has shown that only a slight improvement can be gained from

further improving the existing contiguous allocation strategies (Lo, et al., 1997;

Chang and Mohapatra, 1998). The second is the emergence of the wormhole routing

(Ni and McKinley, 1993; Mohapatra, 1998) and advances in the switching techniques

that have alleviated the impact of the distance that a message traverse on the

communication latency (Lo, et al., 1997; Chang and Mohapatra, 1998). Several non-

contiguous allocation strategies have been proposed (Lo, et al., 1997; Mache, et al.,

1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh,

2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015;

Bani-Mohammad, 2017) which can eliminate both internal and external

fragmentation. In non-contiguous allocation, a requested job can be partitioned and

allocated multiple disjoint submeshes, instead of being waiting for a contiguous

submesh to be available. The non-contiguous allocation strategies can significantly

improve the system performance since they can solve the fragmentation problem,

however, they suffer from the problem of external message contention, where the

messages of different jobs may interfere with each other, and if the contention

increased significantly it would increase the communication delay and defeat the

gain obtained from the system utilization improvement (Min and Mutka, 1994; Mache

and Lo, 1997).

www.manaraa.com

77

Generally, the aim of any allocation strategy is to reduce the average turnaround

time and maximize the system utilization. Moreover, a good allocation strategy must

achieve a complete submesh recognition ability while maintaining a little allocation

overhead (Yoo and Das, 2002).

The existing non-contiguous allocation strategies (Lo, et al., 1997; Mache, et al.,

1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh,

2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015;

Bani-Mohammad, 2017) use various techniques to capture and allocate free sub-

meshes in the mesh system. However, in general, they focus on maintaining a high

degree of contiguity among the processors in the allocated sub-meshes rather than

reducing message contention in the submeshes that are allocated to different jobs.

In order to maintain a high degree of contiguity among the processors allocated to a

given job, these strategies try to compact different allocated submeshes to preserve

larger free submeshes for the incoming jobs, although, the full system utilization is

unachievable.

To improve the performance of the non-contiguous allocation strategies, it is

important to choose the allocation strategy that causes minimal message contention

(Mache and Lo, 1997), where the spatial layout (i.e., the geometric location) of the

allocated submeshes in the mesh system plays a significant role in the interference

among jobs' messages (Mache and Lo, 1997).

www.manaraa.com

78

Motivated by the above observations, a new row based non-contiguous processor

allocation strategy for 2D mesh-connected multicomputer, referred to as Row Based

Strategy (RBS) is proposed. The proposed strategy considers the spatial layout of

the allocated submeshes in the mesh system. RBS classifies the incoming job

requests according to their sizes, (large and small); in order to allocate them in

submeshes that have minimal shared physical communication channel for the

routing paths of their messages. Therefore, and to alleviate message contention

especially for large jobs, RBS tries to maintain a high degree of contiguity among the

processors allocated to the same job with a little allocation overhead.

Extensive simulation experiments have been carried out in order to compare the

performance of the proposed RBS strategy with that of the existing non-contiguous

and contiguous allocation strategies. The results have revealed that RBS performs

much better than the other non-contiguous and contiguous allocation strategies

when the all-to-all communication pattern is used. This is because all-to-all

communication pattern produces much message collision and it is considered as the

weak point of the non-contiguous allocation strategies (Suzaki, et al., 1996). For

instance, for the uniform job size distribution, under a high load, the average

turnaround times of RBS are 72%, 60%, 31%, and 54% of the average turnaround

times of GABL (Bani-Mohammad, et al., 2007), Paging(0) (Lo, et al., 1997), MBS

(Lo, et al., 1997), and FF (Zhu, 1992), respectively. The results have also revealed

that the performance of RBS, in most cases, is relatively better than that of the other

non-contiguous allocation strategies for the one-to-all and the random

www.manaraa.com

79

communication patterns, and they are all superior to the performance of the FF

contiguous allocation strategy. However, the performance of RBS is not better than

that of the other contiguous and non-contiguous allocation strategies when the near

neighbor communication pattern is used. This is because in this communication

pattern, each node allocated to a job communicates with its neighbors (left, right, up,

down) that are allocated to the same job, and this is suitable for the strategies that

maintain a high degree of contiguity among the allocated processors for a given job

and form rectangular shapes for the allocated submeshes. Furthermore, RBS

exhibits high system utilization since it eliminates internal and external

fragmentation. For instance, under high loads, RBS achieves a mean system

utilization up to 78% and up to 85% for uniform and uniform decreasing job size

distributions, respectively, but the system utilization for the FF contiguous allocation

strategy does not exceed 63%.

5.2 Directions for the Future Works

There are several interesting issues and open problems that worth further

investigation. Some of them are briefly described below.

 The performance of the allocation strategies considered in this research has

been evaluated based on the First-Come-First-Served (FCFS) scheduling

policy. A natural extension of this work would be to evaluate the performance

of the proposed allocation strategy with other possible scheduling

approaches, such as Out-of-Order (OO) (Ababneh, 2001),

www.manaraa.com

80

 Shortest-Service-Demand-First (SSD) (Krueger, et al., 1994), and Window-

based job scheduling (Ababneh and Bani-Mohammad, 2011).

 In this research, the 𝑋𝑌 deterministic routing has been used for message

routing because it is simple to implement and it contributes in preventing

deadlocks, however, it cannot react to changes in networks conditions. In

adaptive routing, intermediate nodes take the current network condition, such

as failures or congestion into account, when routing the message to the next

node in the path. It would be interesting to extend the proposed allocation

strategy to this type of routing.

 The performance of the proposed and the existing allocation strategies has

been traditionally carried out by means of simulation based on stochastic

workload models to generate a stream of incoming jobs. It would be

interesting to evaluate the allocation strategies based on real workload traces

from different parallel machines, and to compare the results with those

obtained in this research.

 The proposed strategy (RBS) has been shown to perform well in 2D mesh

network topology. It would be interesting to adapt it to 3D or even a higher

dimensional mesh and assess its performance on these network topologies.

www.manaraa.com

81

References

Ababneh, I. (2001). Job scheduling and contiguous processor allocation for three-

dimensional mesh multicomputers. AMSE Advances in Modelling and

Analysis, 6(4), pp. 43-58.

Ababneh, I. (2008). Availability-based noncontiguous processor allocation policies

for 2D mesh-connected multicomputers. Journal of Systems and Software,

81(7), pp. 1081-1092.

Ababneh, I., and Bani-Mohammad, S. (2003). Noncontiguous Processor Allocation

for Three-Dimensional Mesh Multicomputers. AMSE Advances in Modelling

and Analysis, 8(2), pp. 51-63.

Ababneh, I., and Bani-Mohammad, S. (2011). A new window-based job scheduling

scheme for 2D mesh multicomputers. Simulation Modelling Practice and

Theory, 19(1), pp. 482-493.

Adve, V., and Vernon, M. (1994). Performance analysis of mesh interconnection

networks with deterministic routing. IEEE Transactions on Parallel and

Distributed Systems, 5(3), pp. 225-246.

www.manaraa.com

82

Babbar, D., and Krueger, P. (1994). A performance comparison of processor

allocation and job scheduling algorithms for mesh-connected

multiprocessors. Proceedings of the 6th IEEE Symposium on Parallel and

Distributed Processing, (pp. 46-53). Dallas, TX.

Bani-Mohammad, S. (2008). Efficient Processor Allocation Strategies for Mesh-

Connected Multicomputers. Ph.D Thesis, Department of Computing Science,

University of Galsgow, Glasgow, U.K.

Bani-Mohammad, S. (2017). All Request Shapes Non-Contgiuous Submesh

Allocation Strategy for 2D Mesh Multicomputers. IEEE International

Conference on Engineering & MIS (The IEEE ICEMIS 2017). Monastir,

Tunisia.

Bani-Mohammad, S., and Ababneh, I. (2013). On the performance of non-

contiguous allocation for common communication patterns in 2D mesh-

connected multicomputers. Simulation Modelling Practice and Theory, 32, pp.

155-165.

Bani-Mohammad, S., Ababneh, I., and Hamdan, M. (2010). Comparative

Performance Evaluation of Non-Contiguous Allocation Algorithms in 2D

Mesh-Connected Multicomputers. Proceedings of the 10th IEEE International

Conference on Computer and Information Technology (CIT 2010) (pp. 2933–

2939). Washington, DC: IEEE Computer Society.

www.manaraa.com

83

Bani-Mohammad, S., Ababneh, I., and Yassen, M. (2015). Non-contiguous

processor allocation in the mesh-connected multicomputers using

compaction. Journal of Information Technology Research, 18(4), pp. 57-75.

Bani-Mohammad, S., Ould-Khaoua, M., and Ababneh, I. (2007). An Efficient Non-

Contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers. Juornal of Information Sceinces, 177(14), pp. 2867-2883.

Bani-Mohammad, S., Ould-Khaoua, M., Ababneh, I., and Machenzie, L. (2006). Non-

contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers Based on Sub-meshes Available for Allocation. Proceedings

of the 12th International Conference on Parallel and Distributed Systems

(ICPADS’06). 2, pp. 41-48. IEEE Computer Society Press.

Blumrich, M., Chen, D., Coteus, P., Gara, A., Giampapa, M., Heidelberger, P., Singh,

S., Steinmacher-Burow, B., Takken, Steinmacher-Burowmin, T. and Vranas,

P. (2003). Design and Analysis of the BlueGene/L Torus Interconnection

Network. IBM Research Report RC23025, IBM Research Division. Thomas

J. Watson Research Center.

Chang, C.-Y., and Mohapatra, P. (1998). Performance improvement of allocation

schemes for mesh-connected computers. Journal of Parallel and Distributed

Computing, 52(1), pp. 40-68.

www.manaraa.com

84

Chiu, G.-M., and Chen, S.-K. (1999). An efficient submesh allocation scheme for

two-dimensional meshes with little overhead. IEEE Transactions on Parallel

and Distributed Systems, 10(5), pp. 471-486.

Chuang, P., and Tzeng, N. (1994). Allocating precise submesh in mesh-connected

systems. IEEE Transaction on Parallel and Distributed Systems, 5(2), pp.

211-217.

Chuang, P.-J., and Tzeng, N.-F. (n.d.). Allocating precise submeshes in mesh

connected systems. IEEE Transactions on Parallel and Distributed Systems,

5(2), pp. 211-217.

Cray. (2005). Cray XT3 Datasheet.

Das Sharma, D., and Pradhan, D. (1996). Submesh Allocation in Mesh-

Multicomputers Using Busy-List: A Best-Fit Approach with Complete

Recognition Capability. Journal of Parallel and Distributed Computing, 36(2),

pp. 106-118.

Drewes, C. (1996). Simulating Virtual Cut-through and Wormhole Routing in a

Clustered Torus. M.Sc. Thesis, Laboratory of Computer Architecture and

Digital Techniques (CARDIT), Faculty of Electrical Engineering, Delft

University of Technology.

www.manaraa.com

85

Duato, J., Yalamanchili, C., and Ni, L. (1997). Interconnection Networks: An

Engineering Approach (1st ed.). Los Alamitos, CA, USA: IEEE Computer

Society Press.

Ferreira, A., vel Lejbman, G., and Song, S. (1994). Bus based parallel computers: A

viable way for massive parallelism. Proceedings of Parallel Architectures

Languages Europe (PARLE '94), Lecture Notes in Computer Science 817

(pp. 553-564). Berlin, Heidelberg: Springer Berlin Heidelberg.

Foster, I. (1995). Designing and building parallel programs: concepts and tools for

parallel software engineering. MA: Addison-Wesley.

Fujii, H., Yasuda, Y., Akashi, H., Inagami, Y., Koga, M., Ishihara, O., Kashiyama, M.,

Wada, H., and Sumimoto, T. (1997). Architecture and performance of the

Hitachi SR2201 massively parallel processor system. Proceedings of the 11th

International Parallel Processing Symposium (IPPS’97) (pp. 233-241).

Washington, DC, USA: IEEE Computer Society Press.

Intel Corporation. (1991). A Touchstone DELTA system description.

Intel Corporation. (1991). Paragon XP/S product overview. Beaverton,Oregon:

Supercomputer Systems Division.

www.manaraa.com

86

Krueger, P., Lai, T., and Radiya, V. (1994). Job scheduling is more important than

processor allocation for hypercube computers. IEEE Transactions on Parallel

and Distributed Systems, 5(5), pp. 488-497.

Kruskal, C., and Snir, M. (1983). The performance of multistage interconnection

networks for multiprocessors. IEEE Transactions on Computers, 32(12), pp.

1091-1098.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (2003). Introduction to Parallel

Computing. Rewood City, California: The Benjamin/Cummings publishing

company, Inc.

Li, k., and Cheng, K. -H. (1991). A Two-Dimensional Buddy System for Dynamic

Resource Allocation in a Partitionable Mesh Connected System. Journal of

Parallel and Distributed Computing, 12(1), pp. 79-83.

Lo, V., Windisch, K., Liu, W., and Nitzberg, B. (1997). Non-contiguous processor

allocation algorithms for mesh-connected multicomputers. IEEE Transactions

on Parallel and Distributed Systems, 8(7), pp. 712-726.

Mache, J., and Lo, V. (1997). The Effects of Dispersal on Message-Passing

Contention in Processor Allocation Strategies. Third Joint Conference on

Information Sciences, Sessions on Parallel and Distributed Processing, (pp.

223-226).

www.manaraa.com

87

Mache, J., Lo, V., and Windisch, K. (1997). Minimizing Message-Passing Contention

in Fragmentation-Free Processor Allocation. Proceedings of the 10th

International Conference on Parallel and Distributed Computing Systems,

(pp. 120-124).

Min, D., and Mutka, M. (1994). A multipath contention model for analyzing job

interactions in 2-D mesh multicomputers. Proceedings of 8th International

Parallel Processing Symposium, (pp. 744-751). Cancun.

Min, G. (2003). Performance Modelling and Analysis of Multicomputer

Interconnection Networks. Ph.D. Thesis, Department of Computing Science,

University of Glasgow, Glasgow, U.K.

Moghaddam, S., and Naghibzadeh, M. (2006). A new processor allocation strategy

using ESS (expanding square strategy). 14th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing

(PDP'06), (pp. 137-140). Los Alamitos, CA, USA: IEEE Computer Society.

Mohapatra, P. (1998). Wormhole Routing Techniques for Directly Connected

Multicomputer Systems. ACM Computing Surveys, 30(3), pp. 374-410.

Mohapatra, P., and Chang, C.-Y. (1998). Performance improvement of allocation

schemes for mesh- connected computers. Journal of Parallel and Distributed

Computing, 52(1), 40-68.

www.manaraa.com

88

Moore, S., and Lionel, M. (1996). The Effects of Network Contention on Processor

Allocation Strategies. In Proceedings of the 10th International Parallel

Processing Symposium, (pp. 268-274).

Ni, L., and McKinley, P. (1993). A survey of wormhole routing techniques in direct

networks. IEEE Computer, 26(2), pp. 62-76.

Noakes, M., Dally, W. J., and Wallach, D. A. (1993). The J-machine multicomputer:

an architecture evaluation. Proceedings of the 20th International Symposium

Computer Architecture (pp. 224-235). New York, NY, USA: ACM.

Peterson, C., Sutton, J., and Wiley, P. (1991). iWarp: a 100-MOPS, LIW

microprocessor for multicomputers. IEEE Micro, 11(3), pp. 26-29.

ProcSimity Manual . (1997). ProcSimity V4.3 User’s Manual. University of Oregon.

Seo, K.-H. (2005). Fragmentation-efficient node allocation algorithm in 2D mesh-

connected systems. Proceedings of the 8th International Symposium on

Parallel Architecture, Algorithms and Networks (ISPAN’05) (pp. 318-323).

Washington, DC, USA: IEEE Computer Society Press.

Suzaki, K., Tanuma, H., Hirano, S., Ichisugi, Y., Connelly, C., and Tsukamoto, M.

(1996). Multi-tasking method on parallel computers which combines a

contiguous and a non-contiguous processor partitioning algorithm.

Proceedings of the 3rd International Workshop on Applied Parallel

Computing, Industrial Computation and Optimization (pp. 641-650). London:

Springer.

www.manaraa.com

89

Wan, M., Moore, R., Kremenek, G., and Steube, K. (1996). A batch scheduler for the

Intel Paragon with a non-contiguous node allocation algorithm. Proceedings

of the Workshop on Job Scheduling Strategies for Parallel Processing, IPPS

'96 (pp. 48-64). Berlin, Heidelberg: Springer Berlin Heidelberg.

Windisch, K., Miller, J., and Lo, V. (1995). ProcSimity: an experimental tool for

processor allocation and scheduling in highly parallel systems. Proceedings

of the 5th Symposium on the Frontiers of Massively Parallel Computation

(Frontiers'95) (pp. 414-421). Washington, DC, USA: IEEE Computer Society

Press.

Wu, F., Hsu, C.-C., and Chou, L.-P. (2003). Processor Allocation in the Mesh

Multiprocessors Using the Leapfrog Method. IEEE Transactions on Parallel

and Distributed Systems, 14(3), pp. 276-289.

Yoo, B.-S., and Das, C.-R. (2002). A Fast and Efficient Processor Allocation Scheme

for Mesh-Connected Multicomputers. IEEE Transactions on Parallel and

Distributed Systems, 51(1), 46-60.

Zhu, Y. (1992). Efficient Processor Allocation Strategies for Mesh-Connected

Parallel Computers. Journal of Parallel and Distributed Computing, 16(4),

328-337.

www.manaraa.com

90

 ملخَّص

ت الحواسيب الشبكية أنواع مختلفة من التطبيقات بمختلف الأحجام والخصائص تدعم أنظمة متعددا

الة لتخصيص المعالجات في بيئة متعددة المستخدمين، ولذلك فمن المهم استخدام استراتيجيات فعَّ

لاستغلال القدرة الحسابية لهذه الأنظمة، حيث تعتمد فعالية استراتيجيات التخصيص على قدرتها على

 تغلال المعالجات وتقليل وقت مكوث المهام في النظام.زيادة اس

تقسم استراتيجيات تخصيص المعالجات في متعددات الحواسيب الشبكية الى فئتين رئيسيتين:

متجاورة و غير متجاورة. تعتمد استراتيجيات التخصيص المتجاور في التخصيص على التجاور

شكل الشبكة الجزئية المخصصة شبيه بشكل شبكة الفيزيائي بين المعالجات كما وتشترط ان يكون

الربط في النظام، وقد يؤدي شرط التجاور هذا الي ظهور مشكلة الكسيرات الخارجية وبشكل كبير؛

وتحدث الكسيرات الخارجية عند وجود مجموعة من المعالجِات المتوفرة في النظام والتي تكفي لطلب

بسبب عدم تجاورها، وتؤدي هذه المشكلة إلى تدني معدل معين ولكن لا يمكن تخصيصها لذلك الطلب

استغلال المعالجات في النظام، وبالتالي زيادة وقت مكوث المهام في النظام. تم اقتراح خوارزميات

التخصيص غير المتجاور كحل عملي لمشكلة الكسيرات، وقد شجع على ذلك التطور في تقنيات توجيه

(والتي قللت من تأثير المسافة التي Wormhole Routing)ونقل الرسائل داخل الشبكة مثل

تقطعها الرسالة على التأخير الكلي للتراسل، وعلاوة عًلى ذلك، فقد أظهرت الأدلة التجريبية أن

التحسين الإضافي على خوارزميات التخصيص المتجاور الموجودة لا يؤدي إلاا إلى تحسين طفيف

ك فقد تم تبني التخصيص غير المتجاور للمعالجات، حيث يمكن من على الأداء للنظام بشكل عام، لذل

مة معينة الى إجزاء وتخصيصها في إجزاء متفرقة من الشبكة بدلا ً من انتظارها خلاله تقسيم طلب مه

لجزء من الشبكة يحتوي على معالجات متجاورة ليصبح متاحاً، ومن المتوقع أن يؤدي ذلك إلى

تحسين في معدل استغلال المعالجات في النظام وبالتالي تقليل معدل أوقات مكوث المهام في النظام.

لتحسين المتوقع لإداء النظام بسبب استخدام التخصيص غير المتجاور، الا ان استراتيجيات ومع ذلك ا

التخصيص غير المتجاور تعاني من مشكلة التزاحم بين رسائل المهام المختلفة، مما قد يؤدي إلى

 زيادة التأخير في الوقت المستغرق في التراسل.

www.manaraa.com

91

ية تقنيات مختلفة لإيجاد وتخصيص الشبكات تستخدم خوارزميات التخصيص غير المتجاور الحال

الجزئية المتاحة، إلاا أنها في الغالب تركز على الحفاظ على درجة عالية من التجاور بين المعالجات

المخصصة لمهمة معينة في شبكة جزئية معينة عن طريق تحشير المهام المخصصة بجانب بعضها

اورة المتاحة لطلبات المهام القادمة. تم في هذه للحفاظ على أكبر قدر ممكن من المعالجات المتج

الرسالة اقتراح استراتيجية تخصيص غير متجاور جديدة، يشار اليها بخوارزمية التخصيص غير

المتجاور المُعتَمِدة على الصفوف في متعددات الحواسيب الشبكية ثنائية الأبعاد. تمتلك الخوارزمية

كسيرات الداخلية والخارجية، كما وتقلل من تزاحم الرسائل بين المُقتَرَحة القدرة على منع حدوث ال

المهام المختلفة في الشبكة. تُصنِّف الخوارزمية المُقتَرَحة طلبات المهام الواردة حسب حجمها الى

 نوعين: كبيرة وصغيرة؛ وذلك بهدف التقليل من تزاحم رسائل المهام المختلفة.

وارزمية المُقتَرَحة يفوق أداء استراتيجيات التخصيص المتجاور أظهرت نتائج المحاكاة أنَّ أداء الخ

وغير المتجاور الأخرى من حيث معدل أوقات مكوث المهام في النظام، وذلك عند استخدام نمط

للكل(؛ وهذا بسبب قدرة الخوارزمية المقترحة على تقليل تزاحم الرسائل في الشبكة، –التراسل)الكل

اً أنَّ أداء الخوارزمية المقترحة أفضل نسبياً من أداء خوارزميات التخصيص كما أظهرت النتائج أيض

للكل(و)العشوائي(، وذلك في معظم -غير المتجاور الأخرى عند استخدام نمطي التراسل)الواحد

الحالات، بينما تفوقت استراتيجيات التخصيص الأخرى على الخوارزمية المقترحة عند استخدام نمط

 .المجاور القريب(الاتصال)

