=gl JL dadls
A Row Based Non-Contiguous Processor
Allocation Strategy for 2D Mesh-Connected

Multicomputers

By
Dhaifallah S. Alsardia

Supervisor

Dr. Saad Bani-Mohammad

This Thesis was Submitted in Partial Fulfillment of the
Requirements for the Master’s Degree of Science in Computers

Science

Deanship of Graduate Studies

Al al-Bayt University

May, 2017

www.manaraa.com

Committee Decision

This Thesis (A Row Based Non-Contiguous Processor
Allocation Strategy for 2D Mesh-Connected Multicomputers)

was successfully defended and approved on 24/05/2017.

Examination Committee Signature

Dr. Saad Bani-Mohammad = ..o

(Supervisor)

Prof. Ismael Ababneh

Dr. Omar Shatnawi

Dr. Shadi Aljawarnen

www.manaraa.com

Dedication

To my parents,
To my brothers and sisters
for their endless love, support and

encouragement.

www.manharaa.com

Acknowledgments
First of all, I would like to express my deep gratitude to my supervisor, Dr. Saad Bani-
Mohammad for his inspiring guidance, valuable advice, and constant
encouragement throughout the progress of this work. His suggestion and his
frequent questions motivated this thesis and he never failed to provide his help at all

stages of this thesis.

My great thanks are for my parents, my brother, and my sisters, without their

encouragements and support | could not do anything.

| appreciate all of my friends who encouraged me during my master study; they truly

helped me a lot.

www.manaraa.com

List of Content

COMMITEEE DBCISION ..ttt sennnnnes ii
[D=To [Tot= 11 [0} o PP PP PPPPPPPPPPPPPPPP i
Y03 g To XV T=To Ko T o 0 1=T o) £ SR iv
LIST OF CONTENT ...t e e e e e e r e e e e e e e e ennne s v
LISt OF FIQUIES ..ottt vii
LISt Of TADIES oo Xi
Y ¢ 1] £ = o3 S PP P PP PP PP PPPPPP P TPPPN Xii
Chapter ONne INtrOAUCTION ...ocuiiii e e e e e e e e e e e e e e eeaanes 1
1.1 ProCeSSOr AHTOCATIONciiiiiiiiiiiiiiiiee ettt 4
1.2 Motivation and CONtriDULIONcovviiiiiiiiiiiiie e 8
1.3 0UtliNe Of the TRESIS ... 13
Chapter Two Background and Preliminarieseeeeueemmmmmmmmmmeieeeiennnen. 14
2.1 Related AllOCAtION SIFATEGIESuuuuiiiiiiiiiiiiiiiiiitiiiiiieaeeeeaeeebbeb bbb eebeebeeeaeeeeneene 14
2.1.1 Contiguous alloCatioN STrAEJIESuuuuuiiiiiiiiiiiiiiiiiieiiiiiieeeeebreaeebebeeereeaeeereeeeeaeeee 15
2.1.2 Non-Contiguous AllOCatioN Strat@Qi€sSuuuuueuuuuuurmrinninrnnrennneeneennnnennerennnnnnnnenes 18
2.2 SWItChING MEtNOM ... 25
2.3 ROULING AlGOTITNM .. e e e e e e e e eeeeaaeennne 28
2.4 CommUNICAtION PAIEINSoiiiiiiiiiiiiiii e 30

www.manharaa.com

2.5 ASSUIMPTIONS .oiiiiitiittitteteteteteeeeeee et e s s e 31

2.6 The Simulation Tool (ProcSimity SIMUlator)cccooeeeeiiiiiiiiiiin e 33
2.7 Justification of the Method Of StUAYcooieiiiiiii e 34
G APTEE TR ..ottt 36
oL INEFOAUCTION L. 36
T2 o = 1T o VT o= Y2 PP 38
3.3 The Proposed Row Based Allocation Strategy (RBS)cccoeeevviiiiiiiiiiinieeeecceiiinn, 39
3.4 Complexity Analysis for RBS Allocation Strategyceeeveeeeviveeiiiiiineeeeeveeiiiinnn 49
3.4.1 The Allocation Time COMPIEXITYuuuuumumiiiiiiiiiiiiiiiiii e 50
3.4.1 The Deallocation Time COMPIEXItYcoooviiiiiiiiii e 50
Chapter Four Simulation RESUILSooouiiiiiiii e e e e aaeees 52
4.1 TUINAIOUNG TiMI ..t 57
4.2 SYSTEM ULHHZATION ...ttt 66
4.3 CONCIUSTON ittt e et e e e e e e e e e et e e e e e e et eeeeeeas 72
Chapter Five Conclusion and FUtUre WOrKoiiiiiiiieiiiicie e 74
5.1 CONCIUSTON .ttt 74
5.2 Directions for the FUTUIE WOTKSuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeieeeeeeeeeeeeene 79
REFEIENCES ...t 81
DO oottt 90
Vi

www.manaraa.com

List of Figures

Figure 1.1 An example of an 8 X 8 2D MESNcoooiiiiiiiiiiiiii e, 4
Figure 2.1: An allocation using the frame sliding strategy.cccccccvviiiininnnnnns 17
Figure 2.2: An allocation using First Fit and Best Fit strategies.ccc.cceeevveeeenns 18

Figure 2.3: Paging(0) using different indexing schemes: (a) Row-major indexing,

(b) Shuffled row-major, (c) snake-like indexing, and (d) shuffled snake-like

L0231 T TP 20
Figure 2.4: An allocation using Paging row_major (0) Strate€gy.ccccccevrricvrrnnnnnnenn. 21
Figure 2.5: An allocation using MBS allocation strategy.cccccuvvvmiiniiinnnnnnnnns 22
Figure 2.6: An allocation using ESS allocation strategy.cccccuveveiieniiinnnnnnnns 23
Figure 2.7: an example of allocation using GABL allocation strategy. 25

Figure 2.8: Dimension-ordered (XY) routing in an 8 X 8 2D mesh-connected network.

Figure 3.1: An example of an 8 X 8 mesh system............ccocovvviiiiiiiiii e, 39

Figure 3.2: Allocating processors to a job requests a 2 x 2 submesh using the RBS.

Figure 3.5: Allocating processors to a job requests a 7 x 4 submesh using the RBS

Vii

www.manaraa.com

PP 45

Figure 3.6: Allocating processors to a job requests a 7 X 4 submesh using the RBS.

.. 47
Figure 3. 9: Outline of the RBS allocation algorithm................coooeei, 48
Figure 3.10: Outline of the RBS deallocation algorithm...............ccooeeeii, 49
Figure 3.11: An example of Free Node LiStS. ..o, 49

Figure 4.1: Average turnaround time vs. system load for the one-to-all
communication pattern and uniform side lengths distribution in a 16 X 16 mesh.. 58
Figure 4.2: Average turnaround time vs. system load for the one-to-all
communication pattern and uniform decreasing side lengths distribution in a 16 x

3 S 1S o P 59
Figure 4.3: Average turnaround time vs. system load for the all-to-all

communication pattern and uniform job side lengths distribution in a 16 x 16 mesh.

Figure 4.4: Average turnaround time vs. system load for the all-to-all
communication pattern and uniform decreasing side lengths distribution in a 16 x

L0 MO N . e 61l

viii

www.manaraa.com

Figure 4.5: Average turnaround time vs. system load for the random

communication pattern and uniform job side lengths distribution in a 16 x 16 mesh.

Figure 4.6: Average turnaround time vs. system load for the random
communication pattern and uniform decreasing side lengths distribution in a 16 x

3 IS TS o PR 64
Figure 4.7: Average turnaround time vs. system load for the near neighbor
communication pattern and uniform side lengths distribution in a 16 X 16 mesh.. 65
Figure 4.8: Average turnaround time vs. system load for the near neighbor
communication pattern and uniform decreasing side lengths distribution in a 16 x

3 S 1S o P 66
Figure 4.9: Mean system utilization vs. system load for the one-to-all

communication pattern and uniform job side lengths distribution in a 16 x 16 mesh.

.. 68
Figure 4.10 Mean system utilization vs. system load for the one-to-all
communication pattern and uniform decreasing job side lengths distribution in a

16 X 16 MESN...coeeeeiiiie e 68

Figure 4.11: Mean system utilization vs. system load for the all-to-all

communication pattern and uniform job side lengths distribution in a 16 x 16 mesh.

www.manaraa.com

Figure 4.12: Mean system utilization vs. system load for the all-to-all
communication pattern and uniform decreasing job side lengths distribution in a

16 X 16 MESN...e 69
Figure 4.13: Mean system utilization vs. system load for the random
communication pattern and uniform decreasing job side lengths distribution in a

16 X 16 MESN...cceeeiii e 70
Figure 4.14: Mean system utilization vs. system load for the random
communication pattern and uniform decreasing job side lengths distribution in a

16 X 16 MESN...cceeiiiii e 70
Figure 4.15: Mean system utilization vs. system load for the near neighbor
communication pattern and uniform decreasing job side lengths distribution in a

16 X 16 MESH...i 71
Figure 4.16: Mean system utilization vs. system load for the near neighbor
communication pattern and uniform decreasing job side lengths distribution in a

16 X 0 MBS . oo, 71

www.manaraa.com

List of Tables

Table 4. 1: The System Parameters used in the Simulation Experiments............. 55

Xi

www.manharaa.com

A Row Based Non-Contiguous Processor Allocation Strategy for

2D Mesh-Connected Multicomputers

By
Dhaifallah S. Alsardia

Supervisor

Dr. Saad Bani-Mohammad

Abstract

Multicomputer systems typically support diverse types of applications with various
sizes and characteristics in a multiuser environment. Therefore, it is critical to use
efficient processor allocation strategies to exploit the computation power of such
systems. An efficient processor allocation strategy is that which maximizes system
utilization and minimizes the jobs' turnaround time. In mesh-connected
multicomputers, the processor allocation strategies can be classified into two main
categories: contiguous and non-contiguous. In contiguous allocation, a job is
allocated a submesh only if its processors are contiguous and form a shape the same

as the connecting network. This allocation condition could lead to high

xii

www.manaraa.com

processor fragmentation which could decrease the system performance in terms of
system utilization and turnaround times of jobs. Non-contiguous processor allocation
has been adopted as a feasible solution to the processor fragmentation problem.
This adoption has encouraged by the emergence of the wormhole routing and
advances in switching techniques which have made the communication latency less
sensitive to the distance between the communicating nodes. Moreover, the
experimental evidence has shown that only a slight improvement can be gained from
further improving the existing contiguous allocation strategies. In non-contiguous
allocation, a job request can be partitioned and allocated multiple disjoint submeshes
instead of being queued waiting for a one to be available. This is expected to improve
the system utilization and hence the average turnaround times of jobs. However, an
extra communication overhead is expected due to the contention among messages
of different jobs. The existing non-contiguous allocation strategies use various
techniques to capture and allocate the available submeshes, however, in general,
they focus on maintaining a high degree of contiguity among the processors of the
allocated submeshes by compacting submeshes allocated to different jobs next to
each other. In this thesis, a new non-contiguous allocation strategy, referred to as
Row Based Strategy (RBS), has been suggested for 2D mesh-connected
multicomputers, which alleviates the message contention inside the network. RBS
classifies the incoming job requests according to their sizes into large and small in
order to allocate them in a way that minimizes the contention among different jobs'

messages. The simulation results have revealed that the proposed strategy

xiii

www.manaraa.com

is superior to that of the existing non-contiguous and contiguous allocation strategies

in terms of job turnaround time when the all-to-all communication pattern is used,
and this is due to its ability to alleviate message contention inside the network. Also,
in most cases, it is relatively better than other allocation strategies for the one-to-all

and random communication patterns.

Xiv

www.manharaa.com

Chapter One

Introduction

Parallel computers have been considered as one of the most powerful computing
platforms that support large and complex applications in various areas. A parallel
computer consists of multiple processing units that cooperate to solve a

computational problem (Foster, 1995; Kumar, et al., 2003).

Parallel computers can be generally classified according to the memory architecture
into two types: shared memory and distributed memory model. In shared memory
model, also known as multiprocessors, processors communicate by modifying data
in a shared memory, while in distributed memory model, also known as
multicomputers, since each processor has its own memory, the processors
communicate by exchanging messages via an interconnection network (Foster,

1995; Kumar, et al., 2003).

Interconnection networks provide a mechanism for data transfer among processing
nodes. Typical, interconnection networks consist of links and switches. Generally,
interconnection networks can be classified into static (also referred to as direct) and
dynamic (referred to as indirect) networks. In dynamic networks, links are connected
to each other dynamically by means of switches to form communication paths among

processing nodes; examples of dynamic networks include bus-based

www.manaraa.com

(Ferreira, et al., 1994), multistage interconnection (Kruskal and Snir, 1983) and
crossbar (Fujii, et al., 1997). In static networks, there are point-to-point or direct
communication links among nodes; examples of static networks include mesh (Adve

and Vernon, 1994), k-ary n-cube (Min, 2003), and hypercube (Duato, et al., 1997).

Direct networks have been implemented in many large-scale multicomputer systems
because they are scalable; it can be simply scaled up by adding nodes and channels
based on the predefined network structure. Moreover, direct networks can exploit
communication locality exhibited by many real-world applications (Bani-Mohammad,

2008).

Many networks architecture have been proposed for multicomputers, yet the mesh
topology has gained much popularity because of its simplicity, scalability, regularity
and ease of implementation (Babbar and Krueger, 1994; Das Sharma and Pradhan,
1996; Chang and Mohapatra, 1998; Yoo and Das, 2002). Two-dimensional mesh is
an extension of a linear array to two-dimensions. Each node in 2D mesh is denoted
by an ordered pair (x, y) to represent its row and column position respectively. Each
node (except those at the edges) is connected to four neighbors by direct

communication links.

www.manaraa.com

Various regular structure applications such as matrix computations and image
processing map very naturally into a 2D mesh. Three-dimensional mesh is a
generalization of 2D mesh, where weather modeling and structural modeling are
examples of computations that can be mapped naturally into this topology (Foster,
1995; Kumar, et al., 2003). Because of these features, mesh topology has been

adopted in many commercial and experimental multicomputers.

The Intel Paragon (Intel Corporation, 1991), the Delta Touchstone (Intel
Corporation, 1991), and the iIWARP (Peterson, et al., 1991) are examples of 2D
mesh-connected multicomputers. Examples of 3D mesh-connected multicomputers
include the MIT J-machine (Noakes, et al.), the IBM blueGene/L (Blumrich, et al.,
2003), and the Cray XT3 (Cray, 2005). Figure 1.1 shows an example of a 6 X 6 2D
mesh, where allocated processors are denoted by black circles and free processors

are denoted by white circles.

www.manaraa.com

(0,00 i1.00 12000370V ({4,0) (5.0 (6.0 (7.01

Figure 1.1 An example of an 8 x 8 2D mesh

1.1 Processor Allocation

Multicomputer systems typically support diverse types of applications with diverse
sizes and characteristics in a multiuser environment. Therefore, processor
management system is considered as a critical factor in exploiting the computational
power of multicomputers (Windisch, et al., 1995; Chang and Mohapatra, 1998; Yoo
and Das, 2002). Processor management system mainly comprised of processor
allocation and job scheduling. Processor allocation is the assignment of a requested
number of free processors to a requested job, while job scheduling is the policy that

specifies the order of selecting a waiting job for execution (Babbar and Krueger,

www.manaraa.com

1994; Ababneh and Bani-Mohammad, 2011). If the processor allocator failed to find
a requested submesh for a selected job because of size and/or shape conditions, or
if there are already awaiting jobs in the system, then it joins the waiting jobs queue.
Once the allocator finds a suitable submesh for a selected job, then the job
exclusively holds the processors in this submesh for the whole time of its execution.
Upon completion of execution, the allocated processors are freed and become
available for executing another job (Lo, et al., 1997; Windisch, et al., 1995; Chang

and Mohapatra, 1998).

It is the allocation algorithm responsibility to find available submeshes for incoming
job requests. This process is called submesh recognition ability. If the allocation
algorithm can always find a submesh for an incoming job if at least one is available,

then it is considered to have a complete recognition ability. Although,

the performance of the system improves as the submesh recognition of the allocation
algorithm improves. Adopting a complete recognition ability algorithm could increase
the complexity and the allocation overhead (i.e., allocation and deallocation time).
The aim of any allocation algorithm is to minimize the job turnaround time (i.e. the
time that the job spends in the system from arrival to departure (ProcSimity User’s
Manual, 1997)). Therefore, a good allocation algorithm is the algorithm that realize

recognition-completeness with little allocation overhead (Yoo and Das, 2002).

www.manaraa.com

Processor allocation strategies can be classified into two main categories:
contiguous and non-contiguous. In contiguous allocation strategies (Li and Cheng,
1991; Zhu, 1992; Das Sharma and Pradhan, 1996; Chuang and Tzeng, 1994;
Ababneh, 2001; Ababneh, et al., 2010), jobs are allocated to distinct submeshes of
physically adjacent processors, with the same topology as the underlying
interconnection network. Although, these strategies aim to eliminate the inter-
process interference since only the communication of the same process are
expected within a mesh, and hence the communication overhead is alleviated by
decreasing the distances among the allocated processors. These strategies can
cause high processor fragmentation because of the contiguity condition (Lo, et al.,
1997; Chang and Mohapatra, 1998). This fragmentation is expected to degrade the
system performance in terms of job turnaround time, due to the degradation of the
mean system utilization (i.e. the percentage of processors that are utilized over a

given time (ProcSimity User’'s Manual, 1997)).

Processor fragmentation comes out into two forms: internal and external (Das
Sharma and Pradhan, 1996; Lo, et al., 1997; Chang and Mohapatra, 1998; Seo,
2005). Internal fragmentation occurs when a job is allocated more processors than

it requests; typically, because of a restricted shape of submeshes allocation.

www.manaraa.com

For example, powers of two squares as in (Li and Cheng, 1991), results in extra
processors to be allocated to a requested job, while these processors are wasted
and not used in the actual computation. External fragmentation occurs when a
waiting job cannot be allocated even if the requested number of processors is
available; this is because of the contiguity and shape conditions. Assuming that the
system state shown in Figure 1.1 and the allocation algorithm is contiguous, if a job
requests a 4 x 3 submesh of processors, then the algorithm fails to allocate the
requested sub-mesh in spite of the sufficient number of free processors that are exist

in the mesh.

Experimental evidence has shown that little performance improvement can be
obtained from refinements of contiguous allocation algorithm (Lo, et al., 1997; Chang
and Mohapatra, 1998). The evolution in networking technology such as the
wormhole routing (Ni and McKinley, 1993; Mohapatra, 1998) and faster switching
technique have reduced the impact of the distance between the communicating
nodes on the communication latency (Lo, et al., 1997; Chang and Mohapatra, 1998),
which has made the non-contiguous allocation feasible. The communication latency

is the time that the message takes to be received by the destination node.

Several non-contiguous allocation strategies have been proposed (Lo, et al., 1997,
Mache, et al., 1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and
Naghibzadeh, 2006; Bani-Mohammad, et al.,, 2007; Ababneh, 2008; Bani-

Mohammad, et al., 2015; Bani-Mohammad, 2017),

www.manaraa.com

which can eliminate both internal and external fragmentation. In non-contiguous
allocation, a job can be allocated to multiple disjoint smaller submeshes instead of
being queued waiting for a contiguous one with a fit shape to be available. Although
this leads to a better system utilization, the dispersal of submeshes, that can execute
the same job, may increase the communication overhead due to the inter-process
contention produced by messages from different jobs and long distances between

the communicating nodes (Chang and Mohapatra, 1998; Lo, et al., 1997).

Therefore, it is desirable for the processor allocation strategy to be hybrid between
contiguous and non-contiguous allocation strategies; meaning that, the allocation
strategy should have the ability to partition the job while maintaining a high degree
of contiguity among the allocated processors (Lo, et al., 1997; Bani-Mohammad, et
al., 2007). Yet, it stills the allocation strategy responsibility to recognize and allocate
the available sub-meshes in a way that minimizes the communication overhead in

order to improve the overall system performance.

1.2 Motivation and Contribution

The non-contiguous processor allocation model has solved the problem of
fragmentation that has been considered as the performance bottleneck of the
contiguous processor allocation strategies and degrades the system performance in
terms of job turnaround time and system utilization because of the physical contiguity

and shape allocation conditions (Li and Cheng, 1991; Zhu, 1992; Lo, et al., 1997).

www.manaraa.com

Non-contiguous allocation improves the system performance in terms of system
utilization up to 78% for common workloads (Wan, et al., 1996; Lo, et al., 1997); this
improvement is due to the ability of allocating several scattered submeshes to a

requested job (Mache and Lo, 1997).

The main performance bottleneck of the non-contiguous processor allocation
strategies is the message contention inside the network. The study proposed in (Min
and Mutka, 1994), classifies the contention into two types: internal contention and
external contention. Internal contention occurs when two or more routing paths within
the same job try to use a physical channel at the same time. This type of contention
IS an inherent property of each job and it can occur in both contiguous and non-
contiguous allocation strategies, while external contention occurs when two or more
routing paths of different jobs try to use the same physical channel simultaneously.
This type of contention occurs only in the non-contiguous allocation model. When
non-contiguous allocation is adopted in a system with wormhole routing technique,
the external contention increases the delay of the communication time (Min and

Mutka, 1994).

Obviously, there is a tradeoff between the processor utilization due to the
fragmentation problem and the jobs turnaround time due to the network contention

(Min and Mutka, 1994; Moore and Lionel, 1996).

www.manaraa.com

The contention depends on the switching technology in the underlying network and
the communication pattern among the allocated processors (Min and Mutka, 1994).
Although, contention can be negligible, when the software latency (i.e., the latency
at sender and receiver for processing the message) is high or when the message
size is small (Moore and Lionel, 1996), the communication overhead increases
significantly due to the message contention among the messages of different jobs.
This would increase the delay, and defect the gain of improved system utilization;
and consequently, degrades the system performance in terms of jobs turnaround
time (Min and Mutka, 1994; Mache and Lo, 1997). To improve the performance of
the non-contiguous allocation strategies, it is important to choose the allocation
strategy that causes minimal message contention (Mache and Lo, 1997), where the
spatial layout (i.e., the geometric location) of the allocated submeshes in the mesh
system plays a significant role in the interference among jobs' messages (Mache

and Lo, 1997).

The existing non-contiguous allocation strategies (Lo, et al., 1997; Mache, et al.,
1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh,
2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015;
Bani-Mohammad, 2017) use various techniques to capture and allocate free sub-

meshes in the mesh system.

10

www.manaraa.com

However, in general, they focus on maintaining a high degree of contiguity among
the processors in the allocated sub-meshes rather than reducing message

contention in the submeshes that are allocated to different jobs.

Moreover, it is observed that the existing non-contiguous allocation strategies
compact different sub-meshes to preserve larger contiguous sub-meshes for
incoming job requests, expecting that this would reduce the communication
overhead. Although this seems to be a good technique, but many experimental
results in existing non-contiguous allocation strategies (Lo, et al., 1997; Bani-
Mohammad, et al., 2007; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al.,
2015; Bani-Mohammad, 2017), under common system conditions, reveal that the
average system utilization increases as the load of the job requests increases, until
it eventually stabilized to a value about 80%, meaning that during the overall
execution time, there would be, in average, about 20% of unutilized processors in
the system, and a full system utilization is unachievable. Therefore, compacting
different allocated submeshes seems to be a less significant factor in reducing the
overall communication overhead. In contrast, considering the spatial layout when
allocating submeshes for different job requests can reduce the message contention
between the messages of these jobs, which results in reducing the overall

communication overhead and hence improves the system performance.

Motivated by the above observations, a new row based non-contiguous processor
allocation strategy for 2D mesh-connected multicomputer, referred to as Row Based

Strategy (RBS) is proposed. The proposed strategy considers

11

www.manaraa.com

the spatial layout of the allocated submeshes in the mesh system. RBS classifies
the incoming job requests according to their sizes, (large and small); in order to
allocate them in submeshes that have minimal shared physical communication
channel for the routing paths of their messages. Therefore, to alleviate message
contention especially for large jobs, RBS tries to maintain a high degree of contiguity

among the processors allocated to the same job with a little allocation overhead.

The simulation experiments results reveal that RBS performs much better than the
previous non-contiguous and contiguous allocation strategies considered in this
thesis in terms of jobs turnaround time when the all-to-all communication pattern is
used. This is because all to all communication pattern produces much message
collision and it is considered as the weak point of the non-contiguous allocation
strategies (Suzaki, et al., 1996). The results have also shown that the performance
of RBS is relatively better than that of the previous non-contiguous allocation
strategies for one-to-all and random communication patterns in most cases.
However, it is not better than that of the other contiguous and non-contiguous
allocation strategies when the near neighbor communication pattern is used,
because the privilege in this communication pattern is for the strategies that maintain
a high degree of contiguity and maintain a rectangular shape of the allocated

submeshes.

12

www.manaraa.com

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes well-known
contiguous and non-contiguous allocation strategies that have been proposed for
mesh-connected multicomputer. Also, it presents some preliminaries required for
understanding the subsequent chapters and provides a list of assumptions used in
this research. Finally, the chapter describes the method of study used in this

research and justifies the selection of simulation as a study tool.

Chapter 3 introduces the Row Based Strategy (RBS) as a new non-contiguous
allocation algorithm for 2D mesh-connected multicomputers and describes the main

features of the proposed strategy.

Chapter 4 analyzes and discusses the results of the simulation experiments and
compares the performance of the proposed strategies against that of the well-known

non-contiguous and contiguous ones.

Chapter 5 summarizes the main results presented in this research and outline

possible directions to continue this work in the future.

13

www.manaraa.com

Chapter Two

Background and Preliminaries

The main objective of this chapter is to describe some of the existing contiguous and
non-contiguous allocation strategies that have been proposed in the literature (Li and
Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Das Sharma and Pradhan,
1996; Lo, et al, 1997; Chang and Mohapatra, 1998; Ababneh, 2001; Wu, et al., 2003;
Moghaddam and Naghibzadeh, 2006; Bani-Mohammad, et al., 2007; Ababneh,
2008; Ababneh, et al., 2010; Bani-Mohammad, et al., 2015; Bani-Mohammad, 2017)
for 2D mesh-connected multicomputers. This chapter also describes the system
model assumed in this study. Such background is necessary for understanding the

subsequent chapters.

2.1 Related Allocation strategies

This section overviews some of the existing contiguous and non-contiguous
allocation strategies that have been proposed for 2D mesh-connected

multicomputers.

14

www.manaraa.com

2.1.1 Contiguous allocation strategies

Many non-contiguous allocation strategies (Li and Cheng, 1991; Zhu, 1992; Chuang
and Tzeng, 1994; Das Sharma and Pradhan, 1996; Ababneh, 2001; Ababneh, et al.,
2010) have been proposed for 2D mesh-connected multicomputers. Generally, most
of them aim to reduce fragmentation caused by contiguity constraints in the mesh
system, since the problem of high processor fragmentation can significantly affect

the system performance. Below we describe some of the well-known strategies.

Two Dimensional Buddy System (2DBS): The 2DBS allocation (Li and Cheng,
1991) is proposed to square meshes with a side length of the power two. A requested
job is also allocated to a square sub-mesh with a side length that is rounded up to
the nearest power of two of the maximum side length of the requested job. If a job

requests a sub-mesh of size w x h, such thatw < h, then the 2DBS allocates a sub-
mesh of size s X s, where s = 2rtegz(max(w, k)1 Eor example, if a job

requests a sub-mesh of size 2 x 4 it is allocated a square sub-mesh of size 4 x 4,
which is more than its request, causing a 50% of internal fragmentation, as shown
in Figure 2.1. This strategy suffers from high internal and external fragmentation
because of the rigid side length condition, and it lacks complete sub-mesh
recognition ability. Also, it is applicable only to square meshes (Zhu, 1992; Lo, et al.,

1997;Chang and Mohapatra, 1998).

15

www.manaraa.com

@: Allocated ():Free (): Allocated to request

A job requests 2x4

processors

Figure 2. 1 An allocation using the 2D Buddy allocation strategy.

Frame Sliding (FS): The frame sliding strategy (Chuang and Tzeng, 1994) is
proposed to reduce the fragmentation problem caused by 2DBS, it is applicable to
any shape of a sub-mesh request in any mesh system. The FS algorithm slides a
frame of a requested sub-mesh size across a bit array that represents allocated and
free processors, to find an available sub-mesh. It starts at the lower leftmost free
processor as a base of a candidate frame and examines for suitable frame by
horizontal and vertical strides equivalent to width and length of the frame,
respectively. The searching process ends when a suitable frame is found or when
all candidate frames were checked. Although FS eliminates internal fragmentation,
but it cannot recognize all available sub-meshes and it suffers from high external
fragmentation. FS may fail to allocate a sub-mesh even a one exist because the
jumps are by width and height of the requested sub-mesh. (Lo, et al., 1997; Chang

and Mohapatra, 1998). An example of such case is shown if Figure 2.2.

16

www.manaraa.com

@: Aliocated ():Free (): Allocated to request

A job requests 43

processors

Figure 2.1: An allocation using the frame sliding strategy.

First Fit (FF) and Best Fit (BF): These strategies (Zhu, 1992) scan free sub-meshes
represented in a bit array. FF allocates the first found sub-mesh with a sufficient
number of processors, whereas BF allocates a sub-mesh with the least number of
allocated neighbors to conserve a large contiguous mesh. Figure 2.3 shows the
allocation of a job request for a 3 x 3 sub-mesh using FF and BF. These strategies
have better sub-mesh recognition ability than 2DBS, nevertheless, they could fail to
allocate large enough sub-meshes since they do not consider switching the
requested shape orientation. Although the BF attempts to reduce the probability of
fragmentation, both strategies suffer from significant external fragmentation (Lo, et

al., 1997).

17

www.manaraa.com

@ : Allocated ():Free (): Allocated to request

A job requests 33

processors

Figure 2.2: An allocation using First Fit and Best Fit strategies.

2.1.2 Non-Contiguous Allocation Strategies

Experimental evidence has shown that little performance improvement can be
gained by refinements of contiguous allocation strategies (Lo, et al., 1997; Chang
and Mohapatra, 1998). The wormhole routing (Ni and McKinley, 1993) and faster
switching technique have made the communication latency less sensitive to the
distance between the communication nodes, which has made the non-contiguous
allocation feasible (Lo, et al., 1997; Chang and Mohapatra, 1998). Non-contiguous
allocation allows a job to be executed when there are enough free processors in the
mesh. Several non-contiguous allocation strategies have been proposed for 2D
mesh multicomputers (Lo, et al., 1997; Chang and Mohapatra, 1998; Wu, et al.,

2003; Moghaddam and Naghibzadeh, 2006; Bani-Mohammad,

18

www.manaraa.com

et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015; Bani-Mohammad,
2017). Some of the well-known non-contiguous allocation strategies that have been

proposed in the literature are described below.

Random allocation strategy: This strategy (Lo, et al., 1997) simply allocates k
randomly selected available processors to a request for k processors. Despite its
simplicity and fragmentation elimination, it does not enforce contiguity. Therefore, it
is expected to cause much communication interference between jobs (Lo, et al,

1997).

Paging: In paging strategy (Lo, et al., 1997), the whole mesh is partitioned into equal
sized sub-meshes called pages. The page size is 2P%9°-512¢; \where page_size is

non-negative integer. The page is the basic unit of allocation. Four different indexing
schemes are proposed for indexing the pages (row-major, shuffled row-major,
snake-like, and shuffled snake-like) as shown in Figure 2.4. A paging algorithm is
represented by indexing scheme and page size as pagingingexing scheme (Page_size).

. . k
A job that requests k processors is allocated (zpa gesize gpa ge_size) 7 page of

processors, by traversing the free page list according to the given indexing scheme
(Lo, et al., 1997). Paging (0) eliminates both internal and external fragmentation.
Much contiguity can be enforced by increasing the page size, but as the page size
increases, the paging would probably incur much internal fragmentation. Partitioning

in Paging is based on the characteristics of page,

19

www.manaraa.com

which is globally predefined and independently from the request (Bani-Mohammad,
et al., 2010). Consequently, it may fail to allocate a job contiguously even a one
sufficient mesh is available. Figure 2.5 illustrates an allocation example of Paging

row-major (0)

(d)

Figure 2.3: Paging(0) using different indexing schemes: (a) Row-major
indexing, (b) Shuffled row-major, (c) snake-like indexing, and (d) shuffled
snake-like indexing.

20

www.manharaa.com

.: Allocated O : Free O: Allocated to request

A job requests 44 processors

Figure 2.4: An allocation using Paging row_major (0) Strategy.

Multiple Buddy Strategy (MBS): The MBS (Lo, et al., 1997) is an extension of the
2D buddy strategy. The mesh is divided into distinct square sub-meshes with side
lengths equal to the powers of two upon initialization. The number of processors

requested by an incoming job is factorized into a base of four representation of

Zi‘:‘i” d; x (28 x 2Y), where 0 < d; < 3. The request is then allocated to the mesh
according to the factorized number in which d; number of 2¢ x 2¢ blocks is required.
If a required block is unavailable, MBS recursively searches for a larger block and
repeatedly breaks it down into buddies until it produces blocks of the desired size. If
that fails, the requested block is then broken into four requests for smaller blocks

and the searching process repeats. MBS eliminates fragmentation, while still

maintaining contiguity within individual blocks (Lo, et al., 1997).

21

www.manaraa.com

A main drawback of the MBS is that it may fail to allocate an available sub-mesh
contiguously to a requested job because it is restricted to base 4 blocks of allocation.

An example of MBS allocation is shown in Figure 2.6.

Expanding Square Strategy (ESS): This strategy (Moghaddam and Naghibzadeh,
2006) introduced with the aim of minimizing internal and external message-passing
contention. ESS works as follows: when the system receives a job request, each idle
node in the mesh builds a square around itself and starts to expand it and in each
expansion, all the idle nodes are added to the cluster. If in the last expansion, the
number of idle nodes exceeded the number of requested processors, then the nodes
with minimum sum distance from all other allocated nodes in their corresponding
clusters are added and the job is assigned to these nodes. Figure 2.7 illustrates an

example of the ESS allocation.

.: Allocated O : Free O: Allocated to request

A job requests 4 x4 processors

Figure 2.5: An allocation using MBS allocation strategy.

22

www.manaraa.com

@: Allocated () :Free (): Allocated to request

A job requests 42 processors

Figure 2.6: An allocation using ESS allocation strategy.

Greedy Available Busy List (GABL): In GABL strategy (Bani-Mohammad, et al.,
2007), when a parallel job is selected for allocation, a sub-mesh suitable for the entire
job is searched for. If such a sub-mesh is found, it is allocated to the job and
allocation is done. Otherwise, the largest free sub-mesh that can fit inside the request
job size is allocated. Then, the largest free sub-mesh whose side lengths do not
exceed the corresponding side lengths of the previously allocated sub-mesh is
searched for and allocated provided that this does not result in allocating more
processors than the requested size. This last step is repeated until the requested
number of processors is allocated. Allocated sub-meshes are kept in a busy list.
Each element in this list includes the id of the job the sub-mesh is allocated to. GABL
uses an efficient approach proposed in (Chiu and Chen, 1999), to facilitate the
detection of such available sub-meshes with low allocation overhead. GABL aims to

maintain a high degree of contiguity to decrease

23

www.manaraa.com

the number of allocated sub-meshes to a job and hence decreases the distance
traversed by a message, which can reduce message contention inside the network
(Bani-Mohammad, et al., 2007). Even though, GABL may allocate submeshes that
are far apart from each other. To illustrates how GABL allocates a job request,
consider the system state shown in Figure 2.8, and assume a job request of size 4 x
4 arrives at the system, GABL always tries to allocate any job request contiguously.
It scans the mesh, searching for a free submesh of the requested size, in this case,
4 x 4. GABL failed to find such a contiguous submesh, then it starts by subtracting
one from the maximum side length of the requested submesh and this step is
repeated until it finds a suitable available submesh, in this case a 2 x 3 available
submesh of processors with the coordinates (6,0,7,2) is found, where the first two
coordinates specify the lower left corner of the submesh and the last two coordinates
specify the upper right corner of the submesh Then it continues to allocate another
two submeshes: (3,0,5,1) and (6,6,7,7,) as shown in Figure 2.8 by applying the steps

described above.

24

www.manaraa.com

. : Allocated O: Free O: Allocated to request

A job requests 4X4 processors

Figure 2.7: an example of allocation using GABL allocation strategy.

2.2 Switching Method

The switching method refers to the method used to transfer a message from a source
to a destination usually through a series of intermediate nodes by removing the data
from the input channel and placing it on the output channel at each intermediate
node. The switching technique has a significant impact on the communication
latency in the direct network multicomputer systems. Among several switching
techniques that have been used in multicomputer systems, this section briefly
describes three most important ones: Store-and-forward (Kumar, et al., 2003),
Virtual cut-through (Drewes, 1996), and Wormhole switching (Ni and McKinley,

1993; Mohapatra, 1998).

25

www.manaraa.com

Store-and-forward switching: In store-and-forward switching, also called packet
switching, the message is divided into fixed-length packets that are independently
routed to their destination, since each node holds its destination address in its
header. Each intermediate node stores the entire packet before forwarding it to the
next node in its path. The major drawback of store-and-forward switching is that the
time required to transmit a packet from source to destination is proportional to the
number of traversed intermediate nodes. Furthermore, we need a buffer space to

hold packets at each intermediate node (Ni and McKinley, 1993; Mohapatra, 1998).

Virtual cut-through switching: Virtual cut-through (Drewes, 1996) has been
introduced as an enhancement of store-and-forward switching. Virtual cut-through
reduces the time and space overhead of storing the entire packet at each
intermediate node. In virtual cut-through, an intermediate node stores a packet only
if the next required channel is busy. This reduces the impact of the distance between
the communicating nodes on communication latency. However, a very large buffer
space is required at each node to store all blocked transient packets due to the
probability of blocking multiple messages at any node, and this leads to increase in

the implementation cost (Ni and McKinley, 1993; Mohapatra, 1998).

26

www.manaraa.com

Wormhole switching: Wormhole switching (also called wormhole routing (Duato,
Yalamanchili, and Ni, 1997)) is a variant of virtual cut-through technique that
eliminates the need for large buffer spaces and minimizes the sensitivity of the
communication latency to the distance between the communication nodes. In

wormhole switching, a packet is divided into fixed-size units called flits

(flow control unit), which is the smallest units of data transmission in wormhole
routing network. The header flit(s), which contains the routing information, headway
along the routing path and the remaining data flits follow it contiguously in a pipelined
fashion. When the header flit blocked due to resource contention (link or buffer), then
all trailing flits blocked and occupy the buffers at the intermediate nodes, typically,
one flit at each intermediate node. This can block other messages and further, it can
lead to a deadlock, where messages wait for each other in a cycle without being able
to move forward anymore. Deadlock prevention is a critical issue in wormhole
switching and it is usually achieved by suitable choice for routing function (Ni and

McKinley, 1993; Mohapatra, 1998).

Since wormhole routing pipelines packets during transmission, it can perform well
even in high-diameter networks, such the mesh (Min, 2003). Many experimental
machines such as the IWARP (Peterson, Sutton, and Wiley, 1991) and the MIT J-
machine (Noakes, et al., 1993), and commercial machines such as the Intel Paragon

(Intel Corporation, 1991), the IBM blueGene/L (Blumrich, et al., 2003),

27

www.manaraa.com

and the Cray XT3 (Cray, 2005) have used wormhole switching. Wormhole switching
has been used in this research when examining the performance of the allocation
strategies. The wormhole switching has been used in this research because it has
been used in the previous non-contiguous allocation strategies (Lo, et al., 1997;
Mache, et al., 1997; Bani-Mohammad, et al.,, 2007; Ababneh, 2008;Bani-

Mohammad, et al., 2010; Bani-Mohammad, et al., 2015).

2.3 Routing Algorithm

An efficient routing algorithm is critical to the performance of the parallel
multicomputer. A routing algorithm determines the path that a message follows from
its source to its destination. Routing algorithms can be classified as deterministic and
adaptive. Deterministic routing determines a unique path of the message according
to the source and destination address. Adaptive routing determines the path of the
message according to the current state of the network such as the presences of
failure or congestion and routes along alternative paths. When designing a routing
algorithm, deadlock handling should be considered (Ni and McKinley, 1993;

Mohapatra, 1998; Kumar, et al., 2003).

Dimension-order routing (Ni and McKinley, 1993; Mohapatra, 1998; Kumar, et al.,
2003) is a deterministic routing technique and it provides deadlock-free routing for
wormhole-routed networks; since messages' path cannot form a deadlock cycle. In
Dimension-ordered routing, a sent packet traverses along one dimension at a time
until it reaches the appropriate coordinate then it traverses along the next dimension

towards the destination.

28

www.manaraa.com

Dimension-order routing in 2D mesh networks is referred to as XY routing, where
the packet first traverses along the X dimension (the mesh width) until it reaches the
column of the destination node then it traverses in the Y dimension (the mesh height)
until it reaches the destination as depicted in Figure 2.9. XY routing is used in this

research when examining the performance of

the allocation strategies. XY routing has been used in this research because it has
been used in the previous non-contiguous allocation strategies (Lo, et al., 1997;
Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2010; Bani-

Mohammad, et al., 2015).

Q: Source

.: Destination

Figure 2.8: Dimension-ordered (XY) routing in an 8 x 8 2D mesh-connected

network.

29

www.manaraa.com

2.4 Communication Patterns

Processors allocated to a parallel job often communicate with each other according
to a given communication pattern (Lo, et al., 1997). When evaluating the non-
contiguous allocation, the important parameter to measure is the message
contention that caused by the exchanged messages and its impact on the overall
system performance. Four communication patterns have been considered in this

research work to evaluate the performance of

the proposed non-contiguous allocation algorithm and compared it with that of the
existing algorithms. The first communication pattern is one-to-all (ProcSimity
Manual, 1997), where a randomly selected process sends a message to each other
processors allocated to the same job. The second communication pattern is all-to-
all (ProcSimity Manual, 1997), where each processor in a job sends a message to
all other processors allocated to the same job. This communication pattern causes
much message contention and is considered as the weak point of the non-
contiguous allocation algorithms (Suzaki, et al., 1996). The third communication
pattern is random (ProcSimity Manual, 1997), where a message is sent between a
randomly selected pair of processors (source and destination) within the same job.
In the fourth communication pattern near-neighbor (Bani-Mohammad and Ababneh,

2013), each processor communicates with its neighbors.

30

www.manaraa.com

2.5 Assumptions

In the subsequent chapters, extensive simulation experiments will be presented to
evaluate the proposed allocation strategy (RBS). In this study, we make the following
assumptions which have been mostly used in the literature (Zhu, 1992; Babbar and
Krueger, 1994; Suzaki, et al., 1996; Mache, et al., 1997; Chang and Mohapatra,
1998; Ababneh, 2001; Yoo and Das, 2002; Seo, 2005; Bani-Mohammad, et al.,
2007; Ababneh, 2008; Bani-Mohammad, 2008; Bani-Mohammad, et al., 2010; Bani-

Mohammad, et al., 2015)

e The inter-arrival times of jobs are independent and follow an exponential
distribution.

e Jobs are scheduled on a First-Come-First-Served (FCFS) basis.

e The execution times of jobs depend on the time needed for flits to be routed
through the node, packet sizes, the number of message sent, message
contention and distances messages traverse.

e The side lengths of the sub-meshes requested by jobs are generated
independently and follow a given probability distribution. Two distributions
have been considered in this research. The first is the uniform distribution

over the range from 1 to the mesh side length (L).

31

www.manaraa.com

e The second is the uniform-decreasing distribution. It is determined by four
probability p1, p2, p3, and p4, and four integers (1, (2, [3 and [4, where the
probability that the width (length) of a request falls in the ranges [1,l1], [I1 +
1,12], [I12 + 1,13] and [I3 + 1,l4] is p1, p2, p3, and p4, respectively. The side
lengths within a range are equally likely to occur. For the simulation
experiments in this research work, p1 = 0.4, p2 = 0.2, p3 = 0.2, p4 = 0.2,
1= 1L/8,12=1L/4,13 =L/2,and l4 = L. These distributions have often been
used in the literature (Zhu, 1992; Lo, et al, 1997; Chang and Mohapatra, 1998;
Chiu and Chen, 1999; Ababneh and Bani-Mohammad, 2003; Bani-
Mohammad, et al., 2006)

e Messages are transmitted inside the network using wormhole switching along

with XY routing.

e Messages are of a fixed length (i.e., a fixed number of flits). Moreover, the
number of messages that are generated by a given job are correlated to the
job size in the one-to-all, all-to-all and near-neighbor communication
patterns, since each job does exactly one iteration of the given
communication pattern, and it is only one message per job in the random

communication pattern.

32

www.manaraa.com

2.6 The Simulation Tool (ProcSimity Simulator)

Procsimity (Windisch, et al., 1995; ProcSimity Manual, 1997) is a well-known
software tool for research in the area of processor allocation and job scheduling for
distributed memory multicomputers. It has been developed at the university of
Oregon, and the developments efforts have been supported by OACIS and NSF
(Windisch, et al., 1995). The tool was written in the C programming language and
has been used extensively in evaluating processor allocation and job scheduling
strategies in the mesh-connected multicomputers. ProcSimity has been preferred
because it is open source and includes a detailed simulation of important operations
of multicomputers networks. Moreover, it has been extensively validated in

(Windisch, et al., 1995; ProcSimity Manual, 1997).

ProcSimity allows the user to test the performance of scheduling and allocation

algorithms on job streams comprising a spectrum of parallel applications.

The tool supports experimentation for highly parallel systems based on the mesh
and k-ary n-cube topologies (includes hypercube and torus), and for a range of flow
control and routing technologies. The overall purpose for ProcSimity is to provide a
convenient environment for performance analysis of processor allocation and job
scheduling algorithms. In particular, ProcSimity is designed to investigate some of
the key performance bottlenecks in the areas of scheduling and allocation, such as

fragmentation and communication overhead problems.

33

www.manaraa.com

These areas of processor management have been shown to be critical for achieving
good price/performance ratios in highly parallel systems in a dynamic multi-user

environment. (Windisch, et al., 1995; ProcSimity Manual, 1997).

ProcSimity specifies the target machine environment including the network topology,
routing, and flow control mechanisms, and it provides the users with libraries of
predefined scheduling and allocation algorithms. In addition, a user can easily
develop and integrate its own allocation and scheduling algorithms and even a new
communication pattern into ProcSimity tool. Procsimity involves specification of the
simulation experiments; it supports both stochastic job streams as well as
communication patterns from actual parallel applications. The user can specify
detailed simulation of message-passing overhead at the flit level (Windisch, et al.,

1995; ProcSimity Manual, 1997).

2.7 Justification of the Method of Study

System performance can be generally, evaluated by using two techniques: analytical
modeling and simulation, in addition to conducting measurements on a real practical
system, which may be costly or does not permanently available. The level of the
desired accuracy is considered as one of the key consideration when adopting a
given evaluation technique. In general, analytical models have often low
requirements in terms of computation costs, but they often rely on many assumptions

and simplifications that restrict their applicability to a limited number of scenarios.

34

www.manaraa.com

In contrast, simulation models can easily incorporate details to the desired level of
accuracy in order to mimic more closely the behavior of the real system. The
consequence of this is that simulation often require a longer time to develop and run
the code, compare to analytical modeling (Bani-Mohammad, 2008). However, as we
have used the ProcSimity simulator that has already been developed and
extensively validated (Windisch, et al., 1995; ProcSimity Manual, 1997), we have
easily integrated the suggested algorithm into the simulator. This has helped to

considerably cut down the development time and debugging of the code.

35

www.manaraa.com

Chapter Three

Row Based Strategy (RBS): A New Non-contiguous Processor Allocation

Algorithm for 2D Mesh-Connected Multicomputer

3.1 Introduction

Conventional allocation strategies (Li and Cheng, 1991; Zhu, 1992; Chuang and
Tzeng, 1994; Das Sharma and Pradhan, 1996; Ababneh, 2001, Ababneh, et al.,
2010) suggested for mesh-connected multicomputer are based on contiguous
allocation, where the processors are allocated to a parallel job only if they are
physically contiguous and form a shape that resembles the connecting network
topology. These allocation conditions could cause internal and external processor
fragmentation and degrade the overall system performance due to the inefficient

utilization of the system.

Non-contiguous allocation strategies (Lo, et al., 1997; Chang and Mohapatra, 1998;
Wu, et al.,, 2003; Moghaddam and Naghibzadeh, 2006; Bani-Mohammad, et al.,
2007; Ababneh, 2008; Bani-Mohammad, et al., 2015; Bani-Mohammad, 2017) for
mesh-connected multicomputers have been proposed with the aim of alleviating the
fragmentation problem by ignoring the contiguity conditions. In non-contiguous
allocation, a parallel job can be allocated to multiple disjoint available submeshes
instead of being queued waiting for a contiguous one to be available (Lo, etal., 1997;

Yoo and Das, 2002).

36

www.manaraa.com

Two main reasons have led to the adoption of non-contiguous allocation; the first
one is that the experimental evidence has shown that only slight improvement can
be obtained from refining the existing contiguous allocation strategies (Lo, et al.,
1997; Chang and Mohapatra, 1998), and the second is the advances in network
switching techniques and the emergence of wormhole routing (Ni and McKinley,
1993) which have made the network latency less sensitive to the distance between

the communicating nodes (Lo, et al., 1997; Chang and Mohapatra, 1998).

The non-contiguous allocation has improved the system utilization up to 78% (Wan,
et al.,, 1996; Lo, et al., 1997), this improvement can notably improve the overall
system performance such as the jobs turnaround times and the jobs finish times.
Even though, the non-contiguous allocation suffers from the problem of message
contention inside the network, and if the contention increased significantly, then it
would increase the communication latency and even would defeat the benefits of the

improved system utilization (Min and Mutka, 1994; Mache and Lo, 1997).

The existing non-contiguous allocation (Lo, et al., 1997; Mache et al., 1997; Chang
and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh, 2006; Bani-
Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015; Bani-

Mohammad, 2017)

37

www.manaraa.com

use various techniques, often based on artificial predefined geometric or arithmetic
patterns, to recognize and allocate the available submeshes. Generally, most of
them focus on maintaining a high degree of contiguity among the processors of the
allocated submeshes to a given job. Although, in the wormhole routing the distance

between the communicating nodes is not considered as

the major factor in communication latency. In addition, they generally aim to compact
different allocated submeshes in the hope of preserving larger available submeshes

for incoming job requests, although, the full system utilization is unachievable.

Motivated by the above observations, in this chapter we describe a new non-
contiguous allocation strategy for 2D mesh-connected multicomputers, referred to
as Row Based Strategy (RBS for short). RBS aims to alleviate the message
contention inside the network, which is the main drawback of the non-contiguous

allocation strategies.

3.2 Preliminary

The target system is a 2D mesh with size N = W x H, where W is the width of the

mesh and H is its height.

Each processor (node) is denoted by an ordered pair (x,y), which are the

coordinates of that processor, where0 < x < Wand0 < y < H.

38

www.manaraa.com

Each processor is connected by a bidirectional communication link to its neighbors,

and each node except those at the edges is connected by four such links.

Each row in the mesh is denoted by its y coordinate as R(y).

As shown in Figure 3.1, each block of consecutive rows is denoted by its beginning

and ending rows R(b, e) respectively, where 0 < b < Handb < e <H.

@ Allocated () Free

R(4,6). OO0 .

{0.0) 1.0 12.01{3.0) (4,0} i5.0116.0) (7.0}

Figure 3.1: An example of an 8 x 8 mesh system

3.3 The Proposed Row Based Allocation Strategy (RBS)

The RBS allocation strategy classifies the incoming job requests according to the
requested submesh size into two categories: large and small. If the requested
submesh size is greater than the mesh width, it is considered large. Otherwise, it is

considered small.

39

www.manaraa.com

The main purpose of this classification is to alleviate message contention among
large jobs by reducing the number of allocated processors to a large job in the rows,
which already contain processors allocated to other large jobs. Also, it tries initially
to allocate small jobs in the upper part of the mesh. Knowing that the messages of
two adjacent small jobs allocated next to each other in the same row would not

collide.

For a small job request, if the number of free processors in the mesh is sufficient to
accommodate the requested submesh size, then it is allocated using one of the two
different allocation methods, described below, according to the current allocation

state of the mesh.

Method S.1: If the incoming job request is small (i.e. the requested submesh size
k is less than or equal to the mesh width), the proposed strategy works as follows:
starts at the top row of the mesh downwards, trying to find a row with a sufficient
number of free processors to accommodate the requested job size. If found, then

the k leftmost free processors at that row are allocated, and the allocation is done.

Method S.2: if a small job request cannot be allocated in a single row, then the
strategy allocates it as follows: starts at the top row downwards, and allocates the
rightmost free processors in the current row until the requested number of

processors is allocated,

40

www.manaraa.com

if there are no more free processors remain in the current row and the required
number of processors is not yet allocated, then it steps down to the next lower row
in the mesh and continues allocating the same way until the requested number of

processors is allocated.

Method S.1 Example: Assume that the mesh shown in Figure 3.2 and a job
requests 4 processors, a 2 x 2 submesh, the strategy begins at top row, R(7), the
number of free processors is 2, which is less than the requested number of
processors, then it steps down to the next lower row, R(6), now the number of free

processors in this row is 5, which is sufficient to accommodate the requested size.

Then the 4 leftmost free processors at R(6) are allocated and the allocation is done.

@ : Allocated ():Free (0): Allocated to request

A job requests 2xX2 processors

Figure 3.2: Allocating processors to a job requests a 2 X 2 submesh using

the RBS.

41

www.manaraa.com

Method S.2 Example: Assume that the mesh shown in Figure 3.3 and a job
requests 7 processors, a 1 x7 submesh. Since there is no a single row which
contains a sufficient number of free processors to accommodate the requested
number of processors, the strategy begins at top row, R(7), and allocates the
rightmost free processors which are 2, then it steps down to the next lower row, R(6)
, and allocates the only one free processor at that row, and it continues allocating

the same way until the requested number of processors are allocated.

@ : Allocated (): Free (0): Allocated to request

A job requests 1xX7 processors

Figure 3.3: Allocating processors to a job requests a1 X 7 submesh using

the RBS.

For a large job request, if the number of free processors in the mesh is sufficient to
accommodate the requested submesh size, it is allocated using one of the three
different allocation methods, described below, according to the current allocation

state of the mesh.

42

www.manaraa.com

Initially, the strategy scans the mesh’s rows by starting at the bottom row upwards
and tries to find a block of free rows, R(b, e), with a sufficient number of processors
to accommodate the requested submesh size. Also, for each block of free rows,
R(b,e), in the mesh, the strategy records the number of free processors in the rows

just above and beneath R(b,e), which are R(e + 1) and R(b — 1), respectively.

Method L.1: |If there is a block of free rows R(b,e) in the mesh with a sufficient
number of processors to accommodate the requested size, then they are allocated
to the requested job in an upwards row-major fashion, beginning at row R(b), and

the allocation is done.

Method L.2: If there is no a block of free rows R(b,e) in the mesh with sufficient
number of processors to accommodate the requested job size, then the proposed
strategy checks if there is any block of free row(s) R(b,e) with a number of free
processors in (R(b,e) + R(e + 1) + R(b — 1)) greater than or equal to the requested
submesh size, if such block is found then it starts at row R(b — 1) to allocate x
rightmost free processors at that row, where x is evaluated as follows:

x = Max (job size — (number of free processors in(R(b,e) + R(e + 1))),0),

then it continues to the next upper row, R(b), and allocates processors in an upwards
row-major fashion and the allocation is done. If there are more than one such block

in the mesh, then it chooses the one with the maximum free processors in R(e + 1).

43

www.manaraa.com

Method L.3: If the above two methods failed to allocate the requested submesh size,
then it starts at the bottom row upwards allocating the requested number of free

processors in a row-major fashion and the allocation is done.

Method L.1 example: Assume that the mesh shown in Figure 3.4 and a job requests
20 processors, a 5 x 4 submesh. RBS scans the mesh rows, searching for a block of
free rows which has a number of free processors greater than or equal to 20, since
the free rows block, R(4,6), has a number of free processors equal to 24 which is

sufficient to accommodate the requested size. Then it starts at the beginning row,

R(4), allocating the requested number of processors in a row major fashion.

@ : Allocated (O):Free (0): Allocated to request

A job requests 5xX4 processors

Figure 3.4 :Allocating processors to a job requests a 5 X 4 submesh using the

RBS.

44

www.manaraa.com

Method L.2 example: Assume that the mesh shown in Figure 3.5 and a job requests
28 processors, a 7 X 4 submesh. Since the mesh does not include any block of free
rows with a sufficient number of processors to accommodate the requested job size,
RBS checks if there is any block of free rows, R(b,e), such that the number of free
processorsin R(b,e) + R(b — 1) + R(e + 1) is sufficient to accommodate the requested
submesh size, in this case it is R(3,5), where the number of free processors in
R(3,5) + R(2) + R(6) =24+ 4+ 3 =31, which is sufficient to accommodate the
requested submesh size. therefore, the allocation here is by using method L.2, the

allocation begins at R(2) by allocating Max ((28- (24 + 3)),0) = 1 rightmost free

@ : Allocated (): Free (0): Allocated to request

A job requests 7x4 processors

Figure 3.5: Allocating processors to a job requests a 7 X 4 submesh using the

RBS.

Two extra examples that illustrate large job allocation using method L.2 are depicted

in Figures 3.6 and 3.7.

45

www.manaraa.com

@ : Allocated (0): Free (0): Allocated to request

A job requests 7x4 processors

Figure 3.6: Allocating processors to a job requests a 7 X 4 submesh using the

RBS.

@ : Allocated (0): Free (0): Allocated to request

A job requests 5xX2 processors

S

800000

Figure 3.7: Allocating processors to a job requests a 5 X 2 submesh using

the RBS.

46

www.manaraa.com

Method L.3 example: Assume that the mesh shown in Figure 3.8 and a job requests
16 processors, an 8 x 2 submesh. Since the conditions of methods L1 and L2 do not
match, method L.3 is considered by starting at R(0), allocating the requested number

of processors in a row-major fashion

@ : Allocated (0): Free (0): Allocated to request

A job requests 8 X2 processors

Figure 3.8: Allocating processors to a job requests a 5 x 2 submesh using the

RBS.

47

www.manaraa.com

Procedure RBS_Allocate(a,b):

{

Job_size = axb.

Total_Allocated = 0.

r=H.

Step 1. If (number of free processors<Job_Szie)
return failure.

Step 2. If (Job_size > W)

go to Step 9.
Step3. r=r-1.
Step 4. If (number of free processors in R(r)U Job_size)
{ allocate (Job_size) rightmost free processor in R(r).

return success.

}
Step 5. If (r>0)
go to Step 3.
Step 6. r=H-1.
Step 7. if (number of free processors in R(r) > 0)
{ allocate rightmost free processor in R(r).
Total_allocated = Total_allocated+1.
}

else r=r-1.
Step 8. If (Total_Allocated = Job_Size)
return success.
else
goto Step 7.
Step 9. search the mesh rows from bottom row upwards for a block of free rows,
R(b,e), such that number of free processors in R(b,e) [T Job_Size.

Step if (a block of free rows R(b,e) is found, where the number of free processors in
10. R(b,e) [1 Job_size)
{ allocate the requested number processors in a row-major fashion,

starting at R(b).
return success.

Step if (a block of free rows R(b,e) is found, where number of free processors in
11. (R(b,e)+R(b-7)+R(e+1)) [1 Job_size.)
x=max (Job_size - number of free processors in (R(b,e) + R(e)), O
else).

go to Step 14.

Step allocate (x) rightmost free processors in R(b-1).

12.

Step allocate (Job_size - x) processors in a row-major fashion starting at R(b).

13. return success.

Step allocate the requested number of processors in a row-major fashion starting at
14. R(0).

return success.
} end procedure

Figure 3. 9: Outline of the RBS allocation algorithm.

48

www.manaraa.com

Procedure RBS_Deallocate(a,b):

{
Job_id = id of the departing job.

for each row, R(r), in mesh
for each node in R(r)

if (node's id =
Job _id)
{
remove node's id.
add node to /lan array of ordered lists that keep
freeNodeList[t]. track of all free nodes in each row.

}

} end procedure

Figure 3.10: Outline of the RBS deallocation algorithm.

3.4 Complexity Analysis for RBS Allocation Strategy

RBS strategy maintains an array of ordered lists, Free Node Lists (FNL), that keep
track of all the unallocated nodes and their count for each row in the mesh. As
example, assume the allocation state of the mesh shown in Figure 3.1, the

corresponding array of the FNL is represented as shown in Figure 3.11.

ENL 7] 3,7 5.7 6.7 7.7
FNL [6] 4T|36 | e I e N =

FNLES) | 8 T|° 5 =rL5 P25 3,5 4,5 55 6.5 7.5
N L 0 o o G L S
FNL [3] 5.3 6.3 7.3

NLE) | 4 T|°v2 {12 =132 |72 |

ey | 32t 31 7.1

FNL [0] 6T|2'° et I gt I g O o N o L

Figure 3.11: An example of Free Node Lists.

49

www.manaraa.com

3.4.1 The Allocation Time Complexity

The initial scanning operation only requires checking the count variable in the
elements of the FNL array. In the worst case, it requires traversing all elements of
the FNL array, where the size of the FNL array is equal to mesh height (H). Thus,

the time complexity for scanning operation is O(H).

The allocation operation for a job requests k processors involves removing k entry
from r ordered lists of the FNL array, where r is the number of rows to be traversed
to allocate the requested number of processors. Since removing an entry form the
front or the back of an ordered list takes 0(1) time, thus the allocation time
complexity of RBS is O(r x k). In the worst case (allocating a job of size W x H), itis
O(H.w) or O(N), where W, H, and N are the width, the height and the size of the

mesh, respectively.

3.4.1 The Deallocation Time Complexity

The deallocation operation traverses all the nodes in every row in the mesh and
compare the id of the allocated node with the id of the departing job. If the id is
matched, then the job_id property of the node is reset and an entry containing the
coordinates of the freed node is inserted into the corresponding ordered list in the
FNL array (i.e., FNL[y- coordinate of the freed node]). The worst case in RBS occurs
when deallocating a job of size W x H. Since inserting an entry into an order list of

size W takes o(W) time complexity,

50

www.manaraa.com

then inserting W elements into the same list takes O(W x W). Repeating this
operation in every ordered list in the FNL array would result in O(H x W x W) or

O(W x N) time complexity, where W, H, and N are the width, the height and the size

of the mesh, respectively.

51

www.manharaa.com

Chapter Four

Simulation Results

Extensive simulation experiments have been conducted to evaluate the performance
of the proposed non-contiguous allocation strategy, Row Based Strategy (RBS), and
compare it with the performance of the existing well-known non-contiguous
allocation strategies Paging (Lo, et al., 1997), MBS (Lo, et al., 1997) and GABL
(Bani-Mohammad, et al., 2007). The Paging and MBS allocation strategies have
been chosen since they have been shown to perform well in (Lo, et al., 1997), and
the same thing for GABL, as it has been shown to perform well in (Bani-Mohammad,
et al., 2007; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al., 2015). The
performance of the contiguous First Fit (FF) (Zhu, 1992) allocation strategy has been
included in the comparison as a representative of the contiguous allocation
strategies since it has been shown an average performance in comparison with other
allocation strategies in its class (Lo, et al., 1997). We have implemented the
proposed allocation and deallocation algorithms, in the C programming language,
and integrated the software into the ProcSimity well-known simulation tool for
processor allocation and job scheduling in parallel systems (Windisch, et al., 1995;

ProcSimity Manual, 1997).

The mesh system modeled in this research is a 2D square mesh with a side length
L. System load is varied according to the frequency of job arrivals which is randomly

modeled by an exponential distribution with a mean of average inter-arrival

52

www.manaraa.com

time value. System load is defined as the inverse of mean inter-arrival time. The jobs
are served according to First-Come-First- Served (FCFS) scheduling policy. FCFS
has been used in this research because it is fair and because we are intended to
evaluate and compare the performance of the allocation strategies. The job
execution time is the time needed by a job for completion starting from the time of
allocation, where job execution time depends on the time needed for flits to be routed
through the nodes, packet sizes, the number of messages to be sent, the message
contention inside the network and the distances that the messages traverse (Bani-
Mohammad, 2008). The side lengths of the sub-meshes requested by jobs are
generated independently and follow a given probability distribution. As reported in
Chapter 2, Section 2.5, two distributions have been considered in this research. The
first is the uniform distribution over the range from 1 to the mesh side length L. The
second is the uniform-decreasing distribution. It is determined by four probability p1,
p2, p3, and p4, and four integers 1, [2, [3 and (4, where the probability that the width
(length) of a request falls in the ranges [1,1], [I1 + 1,12], [[2+1,[3] and [I[3+1,l4] is p1,
p2, p3, and p4, respectively. The side lengths within a range are equally likely to
occur. For the simulation experiments in this research work, p1 = 0.4, p2 = 0.2, p3 =
0.2, p4=02,11=1L/8,12=1L/4,13=1L/2, and l4 = L. These distributions have
often been used in the literature (Zhu, 1992; Lo, et al., 1997; Chang and Mohapatra,
1998; Chiu and Chen, 1999; Ababneh and Bani-Mohammad, 2003; Bani-

Mohammad, et al., 2006; Bani-Mohammad, et al., 2010).

53

www.manaraa.com

The interconnection network uses wormhole routing (Ni and McKinley, 1993;
Mohapatra, 1998) along with dimension-order routing (XY routing) (Ni and McKinley,
1993; Mohapatra, 1998). Flits are assumed to take one time unit to move between
two adjacent nodes, and ts time units to be routed through a node. Packet sizes are
represented by Pien. As previously reported in Chapter 2, Section 2.4, processors
allocated to a parallel job communication with each other according to a given
communication pattern. Four communication patterns have been considered in this
research work. The first communication pattern is one-to-all (ProcSimity Manual,
1997), where a randomly selected process sends a message to each other
processors allocated to the same job. The second communication pattern is all-to-
all (ProcSimity Manual, 1997), where each processor in a job sends a message to
all other processors allocated to the same job. This communication pattern causes
much message contention and is considered as the weak point of the non-
contiguous allocation algorithms (Suzaki, et al., 1996). The third communication
pattern is random (ProcSimity Manual, 1997), where a message is sent between a
randomly selected pair of processors (source and destination) within the same job.
In the fourth communication pattern, near-neighbor (Bani-Mohammad and Ababneh,
2013), each processor communicates with its neighbors. The number of messages
that are generated by a job is correlated to the job size in the one-to-all, all-to-all and
near-neighbor communication patterns, since each job does exactly one iteration of
the given communication pattern, and it is only one message per job in the random

communication pattern.

54

www.manaraa.com

The performance figures presented in the following sections in this chapter adopt the
following parameters: the mesh size is a 16 X 16, ts = 3 time units, Pien = 8 flits.
Simulation parameters are illustrated in Table 4.1. It is worth noting that most of the
values of these parameters have been adopted in the literature (Zhu, 1992; Babbar
and Krueger, 1994; Suzaki, et al., 1996; Lo, et al., 1997; Wu, et al., 2003; Bani-
Mohammad, et al., 2006; Bani-Mohammad, et al., 2010) and have been

recommended in (ProcSimity Manual, 1997).

Table 4. 1. The System Parameters used in the Simulation Experiments.

Simulation Parameter Value
Dimensions of the Mesh 16 X 16
Packet Length 8 flits
Flow Control Mechanism Wormhole Routing
Routing Delay 3 time units
Router Type Mesh XY Routing
Allocation Strategy RBS, GABL, MBS, Paging(0), and FF
Scheduling Strategy FCFS

Uniform: Job widths and lengths are uniformly
distributed over the range from 1 to the mesh
Job Size Distribution side lengths L.

Uniform Decreasing: Represents the case
where most jobs are small relative to the size
of the system.

Inter-arrival Time Exponential with different values for mean.
The values are determined through
experimentation with the simulator, ranged
from lower values to higher values.

Mean Time between Sends 0.0

55

www.manaraa.com

Communication Pattern One-to-all, all-to-all, Random, and Near
Neighbor.

Messages per job are correlated to the job
size, since each job does exactly one iteration
Messages per job of the given communication pattern, except
for Random communication pattern, where
the number of messages per job is only one.
Number of Runs The number of runs should be enough so that
the confidence level is 95% and the relative
errors are below 5% of the means. The
number of runs ranged from dozens to
thousands.

Number of Jobs per Run 1000
Each simulation run consists of 1000 completed jobs. Simulation experiments are

repeated for independent runs until the confidence level reaches 95% and the

relative errors do not exceed 5%.

The main performance parameters used are the average turnaround time of jobs
and mean system utilization. The turnaround time of a job is the time that the job
spends in the system from arrival to departure. The system utilization is the
percentage of processors that are utilized over a given period of time. The important
independent variable in the simulation is the system load. It is defined as the inverse
of the mean inter-arrival time of jobs. Its range of values from low to heavy loads has
been determined through experimentation with the simulator allowing each allocation
strategy to reach its upper limits of utilization. In the figures that are presented below,
the x-axis represents the system load while the y-axis represents the results of the

performance metric of interest (Bani-Mohammad, 2008).

56

www.manaraa.com

4.1 Turnaround Time

In Figures 4.1 and 4.2, the average turnaround times of jobs are plotted against the
system load for the one-to-all communication pattern. The results reveal that in most
cases, the performance of RBS is relatively better than that of the other non-
contiguous allocation strategies considered in this research, and they are all
substantially superior to the FF contiguous allocation strategy for both job
distributions considered in this research. This is because that the non-contiguous
allocation strategies considered in this research eliminate both internal and external
fragmentation, hence, they achieve better system utilization and that can notably
improve the system performance in terms of jobs turnaround times, where this
improvement in system utilization outbalanced the impact of the external message
contention encountered in non-contiguous allocation. For example, in Figure 4.1, the
performance of RBS is almost the same as Paging(0), barely 1% in favor for GABL,
and about 2% in favor for RBS compared to MBS, under the job arrival rate of 0.0009
jobs/time unit. However, the performance difference is very clear when comparing
with the contiguous FF strategy as it reaches to 54% in favor for the non-contiguous

RBS strategy, under the job arrival rate of 0.0009 jobs/time unit.

Although the average turnaround times of all non-contiguous and contiguous
allocation strategies are improved when uniform decreasing distribution is used, the
relative performance remains almost the same as when the uniform distribution is

used.

57

www.manaraa.com

This improvement in turnaround times is due to the increased probability of small
jobs to be allocated. Moreover, for non-contiguous allocation strategies, the
message contention decreased since, in the one-to-all communication pattern, the
number of messages for a job is correlated to the job size. For example, in Figure
4.2, the performance of RBS is almost the same as MBS, and the relative difference
in performance in favor for RBS are 1%, 2%, and 51%, compared to GABL,

Paging(0), and FF, respectively, under the job arrival rate of 0.005 jobs/time unit.

Although in one-to-all communication pattern, the number of messages is
considerable, but, the contention produced here, due to the relatively small packet
size (8 flits) used, does not distinguish the superior contention alleviation feature of

RBS, which is more notable when the all-to-all communication pattern is used.

=4—RBS -—l— GABL PAGING ==¢=MBS ===FF

350000

300000

250000

200000

150000

100000

AVERAGE TURNAROUND TIME

50000

o b
N N L I I O S S NN U

LOAD

Figure 4.1: Average turnaround time vs. system load for the one-to-all
communication pattern and uniform side lengths distribution in a 16 X 16
mesh.

58

www.manaraa.com

=4—RBS —ll— GABL PAGING ==¢=MBS ===FF

120000

100000

80000

60000

40000

AVERAGE TURNAROUND TIME

20000

ABEIE ST I I B S SO R A (SR ST ST I J - IV SR U ST ST SR - I O

LOAD

Figure 4.2: Average turnaround time vs. system load for the one-to-all
communication pattern and uniform decreasing side lengths distribution in a
16 x 16 mesh.

In Figures 4.3 and 4.4, the average turnaround times of jobs are plotted against the
system load for the all-to-all communication pattern. The results reveal that RBS
performs much better than all other contiguous and non-contiguous allocation
strategies for both job size distributions considered in this research. This is because
RBS is better than the previous non-contiguous allocation strategies at alleviating
message contention. In Figure 4.3, for example, the average turnaround times of
RBS are 72%, 60%, 31%, and 54% of the average turnaround times of GABL,
Paging(0), MBS, and FF, respectively, under the job arrival rate of 0.00009 jobs/time
units. Again, as seen in one-to-all, the average turnaround times for all allocation
strategies are improved when uniform decreasing distribution is used, however, the
relative performance of the allocation strategies remains almost the same for both

job size distributions. In Figure 4.4, for example, the average turnaround times of

59

www.manaraa.com

RBS are 70%, 77%, 52%, and 62% of the average turnaround times of GABL,
Paging(0), MBS, and FF, respectively, under the job arrival rate of 0.0005 jobs/time

units.

It is worth noting that the FF contiguous allocation strategy substantially outperforms
the non-contiguous allocation MBS strategy for uniform side lengths distribution and
performs better than it for uniform decreasing distribution. This is because that all-
to-all communication pattern produces much message contention and considered
as the weak point of the non-contiguous allocation strategies (Suzaki, et al., 1996),
where the number of messages per job increases dramatically as the job size
increases. If the message contention increases significantly, this would increase the
delay, and defeat the gain of the improved system utilization; and consequently,
degrades the system performance in terms of jobs turnaround time (Min and Mutka,
1994; Mache and Lo, 1997). This is the case here with MBS, because its main
drawback, as previously discussed in Chapter 2, section 2.1.2, is that the submesh
allocation is restricted to a base 4 square blocks, therefore, it may fail to allocate a
requested submesh contiguously even if a one exist, and may unnecessarily divide
a submesh request and allocate the parts far apart of each other, especially for large

jobs, and this can seriously increase the message contention.

60

www.manaraa.com

=4—RBS == GABL == PAGING ==¢=MBS ==i=—FF
3000000

2500000

2000000

1500000

1000000

AVERAGE TURNAROUND TIME

500000

Figure 4.3: Average turnaround time vs. system load for the all-to-all
communication pattern and uniform job side lengths distribution in a 16 x 16
mesh.

=4-—RBS == GABL =#=—PAGING ==¢=MBS ==i=—FF
800000

700000

600000

500000

400000

300000

200000

AVERAGE TURNAROUND TIME

100000

IS O - N N X T T e N Y R

LOAD

Figure 4.4: Average turnaround time vs. system load for the all-to-all
communication pattern and uniform decreasing side lengths distribution in a
16 x 16 mesh.

61

www.manharaa.com

In Figures 4.5 and 4.6, the average turnaround times are plotted against the system
load for the random communication pattern. The results reveal that in most cases,
the performance of RBS is relatively better than that of the other non-contiguous
strategies and they are all outperform the FF contiguous allocation strategy. In
Figure 4.5, for example, when the job arrival rate is 0.1 jobs/time unit, the relative
difference in turnaround times between RBS and GABL is 1% in favor for GABL, and
are 3%, 2% and 36% in favor for RBS compared to Paging(0), MBS, and FF,
respectively. Figure 4.6 shows a slight relative performance improvement for RBS
when the uniform decreasing distribution is used. This is because of the increased
probability of small jobs (relative to mesh size) when using this distribution, and since
RBS, generally, allocates the jobs along the rows of the mesh, and relatively small
jobs can be laid out in a less number of lines, which decreases the contention among
different jobs' messages. Moreover, RBS has the ability to allocate jobs that are
smaller than or equal to the mesh width in a way that reduces the contention among
different small jobs. For example, when the job arrival rate is 0.25, the relative
differences in job turnaround times in favor for RBS are 9%, 7%, 4% and 51%,

compared to GABL, Paging(0), MBS, and FF, respectively.

62

www.manaraa.com

Random communication pattern can only give a glance about the ability of the non-

contiguous allocation strategies to alleviate the message contention. However, the

contention produced when adopting the random communication pattern is not

sufficient to distinguish among the non-contiguous allocation strategies. This is

because for each job, a one message is sent from a randomly selected source node

to another randomly selected destination node within the same job.

8000

7000

6000

5000

4000

3000

2000

AVERAGE TURNAROUND TIME

1000

=4—RBS -—l— GABL

PAGING

—>¢—MBS =¥~ FF

o e i

R IR IR | e VYo

CoONEYE vy

N SN

LOAD

Coarrry

Figure 4.5: Average turnaround time vs. system load for the random
communication pattern and uniform job side lengths distribution in a 16 x 16

mesh.

63

www.manaraa.com

=4—RBS —ll— GABL PAGING ==¢=MBS ===FF
2500

2000

1500

1000

AVERAGE TURNAROUND TIME

o be e =
- I v 000 N w a Yo o VY EY L AYRYEY L Y e vYYoe O e T U Y NN - BP
LOAD

Figure 4.6: Average turnaround time vs. system load for the random
communication pattern and uniform decreasing side lengths distribution in a
16 x 16 mesh.

In Figures 4.7 and 4.8, the average turnaround times are plotted against the system
load for the near neighbor communication pattern. The performance of RBS is not
better than that of the other contiguous and non-contiguous allocation strategies,
however, in Figure 4.7, its performance is very close to the performance of Paging(0)
and MBS, in Figure 4.8, it is very close to the performance of Paging(0). This is
because in this communication pattern, each node allocated to a job communicates
with its neighbors (left, right, up, down) that are allocated to the same job, and this
is suitable for the strategies that maintain a high degree of contiguity among the
allocated processors for a given job and form rectangular shapes for the allocated
submeshes. Figure 4.7 shows that the FF contiguous allocation strategy

substantially outperforms all non-contiguous allocation strategies.

64

www.manaraa.com

This is because, in FF, the allocated submeshes for jobs are contiguous and form
rectangular shapes, therefore, no external contention is encountered here. In
addition, it is notable that the non-contiguous GABL allocation strategy performs
better than other non-contiguous allocation strategies since it combines the desirable
features of both contiguous and non-contiguous allocation while it allocates
submeshes in a rectangular form and tries to maintain a high degree of contiguity
among the processors in the allocated submeshes. The same relative performance
can be seen in Figure 4.8 when the uniform decreasing distribution is used, however,

the relative performance differences are less severe.

—4¢—RBS == GABL PAGING ==¢=MBS ==¥=FF
90000 160
s
2 80000
= 140
o o
2 70000 120 8
2 3
Q 60000 s
< * > ¥ ¥ > m 100 g
Z 50000 w
=) 80 o
~ 40000 Lo
w 3 7]
(U} 60 2]
< 30000 s =2
& > 8
> 40 © =
Z 20000 -'§ :
10000 20 5w
o &
0 P% ay ay ay ay ay o 0 v*
[RR VYo RERA RRR% | I I BN B S BN B R R R
LOAD

Figure 4.7: Average turnaround time vs. system load for the near neighbor
communication pattern and uniform side lengths distribution in a 16 x 16
mesh.

65

www.manaraa.com

== RBS == GABL PAGING ==é=MBS === FF
30000 160
140
25000
120
20000
100

15000 | 80

60
10000

40

AVERAGE TURNAROUND TIME

5000
20

Secondardy axis for FF beacuse of

the small values

o

LOAD

Figure 4.8: Average turnaround time vs. system load for the near neighbor
communication pattern and uniform decreasing side lengths distribution in a
16 x 16 mesh.

4.2 System Utilization

Figures (4.9-4.18) depict the mean system utilization of the investigated allocation
strategies (RBS, GABL, Paging(0), MBS, FF) for the four communication patterns
and the two job size distributions considered in this research work. The load values
ranged from moderate to heavy loads, where heavy loads cause the waiting queue
to be filled very early which allows the allocation strategies to reach its upper system
utilization limit. The non-contiguous allocation strategies achieve a mean system
utilization of 76% to 78%, and 81% to 85%, for uniform and uniform decreasing job
size distributions, respectively, while the contiguous FF strategy cannot exceed 63%

utilization for both job size distribution.

66

www.manaraa.com

This is because contiguous allocation causes high external fragmentation since the
allocation of a requested submesh requires contiguity among its processors and a
shape that resembles the connected network topology; these conditions reduce the
chance of successful allocation and consequently reduce the mean system
utilization. At heavy load values, the mean system utilization for the non-contiguous
allocation strategies are approximately the same for both job size distributions. This
is because the non-contiguous allocation strategies have the same ability to
eliminate internal and external processor fragmentation. They always succeed to

allocate processors to a requested job if there are enough free processors.

It is worth noting that a high mean system utilization rate for an allocation strategy at
a given load value may be caused by high message contention which increases the

communication delay and makes the jobs to stay a longer time in the system

. As an example, in all-to-all communication pattern, MBS has recorded the highest
mean system utilization at moderate system loads, while in the corresponding

turnaround time it is the worst.

67

www.manaraa.com

L00% —4=—RBS == GABL =—PAGING ==¢=MBS === FF
0
90%
80%
0 — R
70%
gso% —f ¢ =K
2 50%
N
= 40%
2 30%
20%
10%
0%
. oy SN | ey et Covaae N RSN Coee A |
LOAD

Figure 4.9: Mean system utilization vs. system load for the one-to-all
communication pattern and uniform job side lengths distribution in a 16 X 16

mesh.
—4—RBS ——GABL —4&—PAGING =——MBS ——FF
100%
90%
80% — B’
70%
2
60% —e——— K < 5 3
250%
N
=40%
(==
230%
20%
10%
0%
oy Ve Y Yo Y ve 3 ¢ 0 0
LOAD

Figure 4.10 Mean system utilization vs. system load for the one-to-all
communication pattern and uniform decreasing job side lengths distribution
ina16 x 16 mesh.

68

www.manharaa.com

100% =—4—RBS —#—GABL -—#—PAGING ==¢=MBS ==¥—FF

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

UTILIZATION

TS O 2T o O OO OO S S O VO SN

LOAD

Figure 4.11: Mean system utilization vs. system load for the all-to-all
communication pattern and uniform job side lengths distribution in a 16 X 16
mesh.

100% =—4—RBS =—#—GABL —#—PAGING ==¢=MBS ==¥—FF
0

90%
80%
70%
60% —Sfe——K¢ X
50%
40%
30%
20%
10%

0%

UTILIZATION

LOAD

Figure 4.12: Mean system utilization vs. system load for the all-to-all
communication pattern and uniform decreasing job side lengths distribution
ina 16 x 16 mesh.

69

www.manharaa.com

100% =4—RBS =—=GABL =#—PAGING ==¢=MBS ==le=FF
oD

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
S T T O I O N I N T L 2O O O X X X O N SN

UTILIZATION

LOAD

Figure 4.13: Mean system utilization vs. system load for the random
communication pattern and uniform decreasing job side lengths distribution
ina 16 x 16 mesh.

=—4—RBS =—M—GABL =—#&—PAGING ==¢=\VIBS ==¥=FF

100%
90%
80%
70%
60%
50%
40%

> 30%

20%
10%

0%
Vorf e e e 000 e tY e e VY EY G AYYEY Y v s Y e e s N Y e Y

TILIZATION

LOAD

Figure 4.14: Mean system utilization vs. system load for the random
communication pattern and uniform decreasing job side lengths distribution
ina 16 x 16 mesh.

70

www.manharaa.com

100% =4—RBS === GABL ==#—PAGING ==¢=[IBS ==e=FF
00

90%
80%
70%

5 60%

E50%

N

= 40%

[

=2 30%
20%
10%

0%
R I R R N R A I B 2 O N O R R R K

LOAD

Figure 4.15: Mean system utilization vs. system load for the near neighbor
communication pattern and uniform decreasing job side lengths distribution
ina 16 x 16 mesh.

=4-—RBS =ll—GABL =#—PAGING ==¢=MBS ==e=FF
100%

90%
80%
70%

& 60%

E 50%

= 40%

= 30%
20%
10%

0%
I I X ¥ T I L BN S AR NS ISR I 4 SRS SR S

LOAD

Figure 4.16: Mean system utilization vs. system load for the near neighbor
communication pattern and uniform decreasing job side lengths distribution
ina 16 x 16 mesh.

71

www.manharaa.com

4.3 Conclusion

This chapter has investigated the performance merits of the non-contiguous
allocation in the 2D mesh network. To this end, we have suggested a new non-
contiguous allocation strategy, referred to as Row Based Strategy (RBS for short),
which differs from the previous non-contiguous allocation strategies in the method
used to allocate different submeshes for the job requests according to their sizes.
RBS classifies the incoming job requests according to their sizes into two categories:
large and small, where a job is considered large if the number of requested
processors is greater than the mesh width, otherwise, it is considered small. The
main goal of this classification is to reduce the contention among messages of
different jobs by minimizing the number of processors allocated to a large job in the
rows which already contain processors allocated to another large job. Also, it tries to
allocate the small jobs in the upper part of the mesh, knowing that the messages of

two small jobs allocated next to each other in the same row would not collide.

The performance of RBS has been compared against that of the existing non-
contiguous and contiguous allocation strategies. Simulation results have shown that
RBS can significantly improve the performance despite the external contention
caused by interference among messages of different jobs. RBS also achieves
efficient system utilization compared to the contiguous strategies, due to its ability to

eliminate internal and external processor fragmentation.

72

www.manaraa.com

The results have also revealed that, RBS is superior to the previous well known non-
contiguous allocation strategies, such as GABL, Paging(0), and MBS in terms of

turnaround time for

the all-to-all communication pattern, which is considered as the weak point of the
non-contiguous allocation strategies. This is because all-to-all communication
pattern produces intensive messages and hence increases the message contention
and consequently increases the communication delay. The RBS superiority here is
due to its merit at alleviating the message contention inside the network, which can

significantly improve the average turnaround times of the jobs.

The results have also shown that the performance of RBS is relatively better than
that of the previous non-contiguous allocation strategies for one-to-all and random
communication patterns in most cases. However, it is not better than that of the other
contiguous and non-contiguous strategies when the near neighbor communication
pattern is used, because the privilege in this communication pattern is for the
strategies that maintain a high degree of contiguity and maintain a rectangular shape

of the allocated submeshes.

73

www.manaraa.com

Chapter Five

Conclusion and Future Work

5.1 Conclusion

Parallel computers have been considered as one of the most powerful computing
platforms that support various types of large and complex applications in fields such
as engineering, sciences, and many others. Distributed-memory multicomputers are
an important class of parallel computers as they offer a cost-effective alternative of
traditional supercomputers (Foster, 1995; Kumar, et al.,, 2003). Many topologies
have been suggested for the multicomputer networks, yet, the mesh topology has
gained much popularity, because of its simplicity, regularity, scalability, and partition-
ability. Moreover, many applications can be mapped very naturally into the mesh
topology, such as matrix computation, image processing, and many other practical
applications (Babbar and Krueger, 1994; Foster, 1995; Das Sharma and Pradhan,
1996; Chang and Mohapatra, 1998; Yoo and Das, 2002; Kumar, et al., 2003). Mesh
topology has been adopted in many commercial and experimental multicomputers.
The Intel Paragon (Intel Corporation, 1991), the Delta Touchstone (Intel Corporation,
1991), and the IWARP (Peterson, et al., 1991) are examples of 2D mesh-connected
multicomputers. Examples of 3D mesh-connected multicomputers include the MIT
J-machine (Noakes, et al.), the IBM blueGene/L (Blumrich, et al., 2003), and the

Cray XT3 (Cray, 2005).

74

www.manaraa.com

Many research studies have been investigated the processor allocation in
distributed-memory multicomputers, especially those based on mesh network (Li
and Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Das Sharma and Pradhan,
1996; Lo, et al, 1997; Chang and Mohapatra, 1998; Ababneh, 2001; Wu, et al., 2003;
Moghaddam and Naghibzadeh, 2006; Bani-Mohammad, et al., 2007; Ababneh,
2008; Ababneh, et al., 2010; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al.,
2015; Bani-Mohammad, 2017). Processor allocation strategies can be mainly
classified into two groups: contiguous and non-contiguous. In contiguous allocation
strategies (Li and Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Das Sharma
and Pradhan, 1996; Ababneh, 2001; Ababneh, et al., 2010), the allocated
processors must be physically contiguous and resemble the shape of the underlying
network. The main goal of this type of allocation is to alleviate the external message
contention, since only messages of the same job are expected within an allocated
submesh, and to decrease the distances among the processors allocated to the
same job. As a consequence of these allocation limitations, inefficient system
utilization is expected due to the high processor fragmentation. Processor
fragmentation can be classified into two types: internal and external (Das Sharma
and Pradhan, 1996; Lo, et al., 1997; Chang and Mohapatra, 1998; Seo, 2005).
Internal fragmentation occurs when a requested job is allocated more processors
than it is requested, the extra allocated processors are wasted and not used in the
real computation. External fragmentation occurs when a job request cannot be
allocated because of the contiguity and shapes allocation conditions, even that the

requested number of processors is available.

75

www.manaraa.com

Two main reasons have led to the adoption the non-contiguous allocation as a
plausible solution to the processor fragmentation problem: the first one is that the
experimental evidence has shown that only a slight improvement can be gained from
further improving the existing contiguous allocation strategies (Lo, et al., 1997,
Chang and Mohapatra, 1998). The second is the emergence of the wormhole routing
(Ni and McKinley, 1993; Mohapatra, 1998) and advances in the switching techniques
that have alleviated the impact of the distance that a message traverse on the
communication latency (Lo, et al., 1997; Chang and Mohapatra, 1998). Several non-
contiguous allocation strategies have been proposed (Lo, et al., 1997; Mache, et al.,
1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh,
2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015;
Bani-Mohammad, 2017) which can eliminate both internal and external
fragmentation. In non-contiguous allocation, a requested job can be partitioned and
allocated multiple disjoint submeshes, instead of being waiting for a contiguous
submesh to be available. The non-contiguous allocation strategies can significantly
improve the system performance since they can solve the fragmentation problem,
however, they suffer from the problem of external message contention, where the
messages of different jobs may interfere with each other, and if the contention
increased significantly it would increase the communication delay and defeat the
gain obtained from the system utilization improvement (Min and Mutka, 1994; Mache

and Lo, 1997).

76

www.manaraa.com

Generally, the aim of any allocation strategy is to reduce the average turnaround
time and maximize the system utilization. Moreover, a good allocation strategy must
achieve a complete submesh recognition ability while maintaining a little allocation

overhead (Yoo and Das, 2002).

The existing non-contiguous allocation strategies (Lo, et al., 1997; Mache, et al.,
1997; Chang and Mohapatra, 1998; Wu, et al., 2003; Moghaddam and Naghibzadeh,
2006; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2015;
Bani-Mohammad, 2017) use various techniques to capture and allocate free sub-
meshes in the mesh system. However, in general, they focus on maintaining a high
degree of contiguity among the processors in the allocated sub-meshes rather than
reducing message contention in the submeshes that are allocated to different jobs.
In order to maintain a high degree of contiguity among the processors allocated to a
given job, these strategies try to compact different allocated submeshes to preserve
larger free submeshes for the incoming jobs, although, the full system utilization is

unachievable.

To improve the performance of the non-contiguous allocation strategies, it is
important to choose the allocation strategy that causes minimal message contention
(Mache and Lo, 1997), where the spatial layout (i.e., the geometric location) of the
allocated submeshes in the mesh system plays a significant role in the interference

among jobs' messages (Mache and Lo, 1997).

77

www.manaraa.com

Motivated by the above observations, a new row based non-contiguous processor
allocation strategy for 2D mesh-connected multicomputer, referred to as Row Based
Strategy (RBS) is proposed. The proposed strategy considers the spatial layout of
the allocated submeshes in the mesh system. RBS classifies the incoming job
requests according to their sizes, (large and small); in order to allocate them in
submeshes that have minimal shared physical communication channel for the
routing paths of their messages. Therefore, and to alleviate message contention
especially for large jobs, RBS tries to maintain a high degree of contiguity among the

processors allocated to the same job with a little allocation overhead.

Extensive simulation experiments have been carried out in order to compare the
performance of the proposed RBS strategy with that of the existing non-contiguous
and contiguous allocation strategies. The results have revealed that RBS performs
much better than the other non-contiguous and contiguous allocation strategies
when the all-to-all communication pattern is used. This is because all-to-all
communication pattern produces much message collision and it is considered as the
weak point of the non-contiguous allocation strategies (Suzaki, et al., 1996). For
instance, for the uniform job size distribution, under a high load, the average
turnaround times of RBS are 72%, 60%, 31%, and 54% of the average turnaround
times of GABL (Bani-Mohammad, et al., 2007), Paging(0) (Lo, et al., 1997), MBS
(Lo, et al., 1997), and FF (Zhu, 1992), respectively. The results have also revealed
that the performance of RBS, in most cases, is relatively better than that of the other

non-contiguous allocation strategies for the one-to-all and the random

78

www.manaraa.com

communication patterns, and they are all superior to the performance of the FF
contiguous allocation strategy. However, the performance of RBS is not better than
that of the other contiguous and non-contiguous allocation strategies when the near
neighbor communication pattern is used. This is because in this communication
pattern, each node allocated to a job communicates with its neighbors (left, right, up,
down) that are allocated to the same job, and this is suitable for the strategies that
maintain a high degree of contiguity among the allocated processors for a given job
and form rectangular shapes for the allocated submeshes. Furthermore, RBS
exhibits high system utilization since it eliminates internal and external
fragmentation. For instance, under high loads, RBS achieves a mean system
utilization up to 78% and up to 85% for uniform and uniform decreasing job size
distributions, respectively, but the system utilization for the FF contiguous allocation

strategy does not exceed 63%.

5.2 Directions for the Future Works

There are several interesting issues and open problems that worth further

investigation. Some of them are briefly described below.

e The performance of the allocation strategies considered in this research has
been evaluated based on the First-Come-First-Served (FCFS) scheduling
policy. A natural extension of this work would be to evaluate the performance
of the proposed allocation strategy with other possible scheduling

approaches, such as Out-of-Order (OO) (Ababneh, 2001),

79

www.manaraa.com

e Shortest-Service-Demand-First (SSD) (Krueger, et al., 1994), and Window-

based job scheduling (Ababneh and Bani-Mohammad, 2011).

¢ In this research, the XY deterministic routing has been used for message
routing because it is simple to implement and it contributes in preventing
deadlocks, however, it cannot react to changes in networks conditions. In
adaptive routing, intermediate nodes take the current network condition, such
as failures or congestion into account, when routing the message to the next
node in the path. It would be interesting to extend the proposed allocation

strategy to this type of routing.

e The performance of the proposed and the existing allocation strategies has
been traditionally carried out by means of simulation based on stochastic
workload models to generate a stream of incoming jobs. It would be
interesting to evaluate the allocation strategies based on real workload traces
from different parallel machines, and to compare the results with those
obtained in this research.

e The proposed strategy (RBS) has been shown to perform well in 2D mesh
network topology. It would be interesting to adapt it to 3D or even a higher

dimensional mesh and assess its performance on these network topologies.

80

www.manaraa.com

References

Ababneh, 1. (2001). Job scheduling and contiguous processor allocation for three-
dimensional mesh multicomputers. AMSE Advances in Modelling and

Analysis, 6(4), pp. 43-58.

Ababneh, 1. (2008). Availability-based noncontiguous processor allocation policies
for 2D mesh-connected multicomputers. Journal of Systems and Software,

81(7), pp. 1081-1092.

Ababneh, I., and Bani-Mohammad, S. (2003). Noncontiguous Processor Allocation
for Three-Dimensional Mesh Multicomputers. AMSE Advances in Modelling

and Analysis, 8(2), pp. 51-63.

Ababneh, I., and Bani-Mohammad, S. (2011). A new window-based job scheduling
scheme for 2D mesh multicomputers. Simulation Modelling Practice and

Theory, 19(1), pp. 482-493.

Adve, V., and Vernon, M. (1994). Performance analysis of mesh interconnection
networks with deterministic routing. IEEE Transactions on Parallel and

Distributed Systems, 5(3), pp. 225-246.

81

www.manaraa.com

Babbar, D., and Krueger, P. (1994). A performance comparison of processor
allocation and job scheduling algorithms for ~mesh-connected
multiprocessors. Proceedings of the 6th IEEE Symposium on Parallel and

Distributed Processing, (pp. 46-53). Dallas, TX.

Bani-Mohammad, S. (2008). Efficient Processor Allocation Strategies for Mesh-
Connected Multicomputers. Ph.D Thesis, Department of Computing Science,

University of Galsgow, Glasgow, U.K.

Bani-Mohammad, S. (2017). All Request Shapes Non-Contgiuous Submesh
Allocation Strategy for 2D Mesh Multicomputers. IEEE International
Conference on Engineering & MIS (The IEEE ICEMIS 2017). Monastir,

Tunisia.

Bani-Mohammad, S., and Ababneh, I. (2013). On the performance of non-
contiguous allocation for common communication patterns in 2D mesh-
connected multicomputers. Simulation Modelling Practice and Theory, 32, pp.

155-165.

Bani-Mohammad, S., Ababneh, |, and Hamdan, M. (2010). Comparative
Performance Evaluation of Non-Contiguous Allocation Algorithms in 2D
Mesh-Connected Multicomputers. Proceedings of the 10th IEEE International
Conference on Computer and Information Technology (CIT 2010) (pp. 2933—

2939). Washington, DC: IEEE Computer Society.

82

www.manaraa.com

Bani-Mohammad, S., Ababneh, I.,, and Yassen, M. (2015). Non-contiguous
processor allocation in the mesh-connected multicomputers using

compaction. Journal of Information Technology Research, 18(4), pp. 57-75.

Bani-Mohammad, S., Ould-Khaoua, M., and Ababneh, I. (2007). An Efficient Non-
Contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers. Juornal of Information Sceinces, 177(14), pp. 2867-2883.

Bani-Mohammad, S., Ould-Khaoua, M., Ababneh, I., and Machenzie, L. (2006). Non-
contiguous Processor Allocation Strategy for 2D Mesh Connected
Multicomputers Based on Sub-meshes Available for Allocation. Proceedings
of the 12th International Conference on Parallel and Distributed Systems

(ICPADS06). 2, pp. 41-48. IEEE Computer Society Press.

Blumrich, M., Chen, D., Coteus, P., Gara, A., Giampapa, M., Heidelberger, P., Singh,
S., Steinmacher-Burow, B., Takken, Steinmacher-Burowmin, T. and Vranas,
P. (2003). Design and Analysis of the BlueGene/L Torus Interconnection
Network. IBM Research Report RC23025, IBM Research Division. Thomas

J. Watson Research Center.

Chang, C.-Y., and Mohapatra, P. (1998). Performance improvement of allocation
schemes for mesh-connected computers. Journal of Parallel and Distributed

Computing, 52(1), pp. 40-68.

83

www.manaraa.com

Chiu, G.-M., and Chen, S.-K. (1999). An efficient submesh allocation scheme for
two-dimensional meshes with little overhead. IEEE Transactions on Parallel

and Distributed Systems, 10(5), pp. 471-486.

Chuang, P., and Tzeng, N. (1994). Allocating precise submesh in mesh-connected
systems. IEEE Transaction on Parallel and Distributed Systems, 5(2), pp.

211-217.

Chuang, P.-J., and Tzeng, N.-F. (n.d.). Allocating precise submeshes in mesh
connected systems. IEEE Transactions on Parallel and Distributed Systems,

5(2), pp. 211-217.

Cray. (2005). Cray XT3 Datasheet.

Das Sharma, D., and Pradhan, D. (1996). Submesh Allocation in Mesh-
Multicomputers Using Busy-List: A Best-Fit Approach with Complete
Recognition Capability. Journal of Parallel and Distributed Computing, 36(2),

pp. 106-118.

Drewes, C. (1996). Simulating Virtual Cut-through and Wormhole Routing in a
Clustered Torus. M.Sc. Thesis, Laboratory of Computer Architecture and
Digital Techniques (CARDIT), Faculty of Electrical Engineering, Delft

University of Technology.

84

www.manaraa.com

Duato, J., Yalamanchili, C., and Ni, L. (1997). Interconnection Networks: An
Engineering Approach (1st ed.). Los Alamitos, CA, USA: IEEE Computer

Society Press.

Ferreira, A., vel Lejpbman, G., and Song, S. (1994). Bus based parallel computers: A
viable way for massive parallelism. Proceedings of Parallel Architectures
Languages Europe (PARLE '94), Lecture Notes in Computer Science 817

(pp. 553-564). Berlin, Heidelberg: Springer Berlin Heidelberg.

Foster, 1. (1995). Designing and building parallel programs: concepts and tools for

parallel software engineering. MA: Addison-Wesley.

Fujii, H., Yasuda, Y., Akashi, H., Inagami, Y., Koga, M., Ishihara, O., Kashiyama, M.,
Wada, H., and Sumimoto, T. (1997). Architecture and performance of the
Hitachi SR2201 massively parallel processor system. Proceedings of the 11th
International Parallel Processing Symposium (IPPS’97) (pp. 233-241).

Washington, DC, USA: IEEE Computer Society Press.

Intel Corporation. (1991). A Touchstone DELTA system description.

Intel Corporation. (1991). Paragon XP/S product overview. Beaverton,Oregon:

Supercomputer Systems Division.

85

www.manaraa.com

Krueger, P., Lai, T., and Radiya, V. (1994). Job scheduling is more important than
processor allocation for hypercube computers. IEEE Transactions on Parallel

and Distributed Systems, 5(5), pp. 488-497.

Kruskal, C., and Snir, M. (1983). The performance of multistage interconnection
networks for multiprocessors. IEEE Transactions on Computers, 32(12), pp.

1091-1098.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (2003). Introduction to Parallel
Computing. Rewood City, California: The Benjamin/Cummings publishing

company, Inc.

Li, k., and Cheng, K. -H. (1991). A Two-Dimensional Buddy System for Dynamic
Resource Allocation in a Partitionable Mesh Connected System. Journal of

Parallel and Distributed Computing, 12(1), pp. 79-83.

Lo, V., Windisch, K., Liu, W., and Nitzberg, B. (1997). Non-contiguous processor
allocation algorithms for mesh-connected multicomputers. IEEE Transactions

on Parallel and Distributed Systems, 8(7), pp. 712-726.

Mache, J., and Lo, V. (1997). The Effects of Dispersal on Message-Passing
Contention in Processor Allocation Strategies. Third Joint Conference on
Information Sciences, Sessions on Parallel and Distributed Processing, (pp.

223-226).

86

www.manaraa.com

Mache, J., Lo, V., and Windisch, K. (1997). Minimizing Message-Passing Contention
in Fragmentation-Free Processor Allocation. Proceedings of the 10th
International Conference on Parallel and Distributed Computing Systems,

(pp. 120-124).

Min, D., and Mutka, M. (1994). A multipath contention model for analyzing job
interactions in 2-D mesh multicomputers. Proceedings of 8th International

Parallel Processing Symposium, (pp. 744-751). Cancun.

Min, G. (2003). Performance Modelling and Analysis of Multicomputer
Interconnection Networks. Ph.D. Thesis, Department of Computing Science,

University of Glasgow, Glasgow, U.K.

Moghaddam, S., and Naghibzadeh, M. (2006). A new processor allocation strategy
using ESS (expanding square strategy). 14th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing

(PDP'06), (pp- 137-140). Los Alamitos, CA, USA: IEEE Computer Society.

Mohapatra, P. (1998). Wormhole Routing Techniques for Directly Connected

Multicomputer Systems. ACM Computing Surveys, 30(3), pp. 374-410.

Mohapatra, P., and Chang, C.-Y. (1998). Performance improvement of allocation
schemes for mesh- connected computers. Journal of Parallel and Distributed

Computing, 52(1), 40-68.

87

www.manaraa.com

Moore, S., and Lionel, M. (1996). The Effects of Network Contention on Processor
Allocation Strategies. In Proceedings of the 10th International Parallel

Processing Symposium, (pp. 268-274).

Ni, L., and McKinley, P. (1993). A survey of wormhole routing techniques in direct

networks. IEEE Computer, 26(2), pp. 62-76.

Noakes, M., Dally, W. J., and Wallach, D. A. (1993). The J-machine multicomputer:
an architecture evaluation. Proceedings of the 20th International Symposium

Computer Architecture (pp. 224-235). New York, NY, USA: ACM.

Peterson, C., Sutton, J., and Wiley, P. (1991). iWarp: a 100-MOPS, LIW

microprocessor for multicomputers. IEEE Micro, 11(3), pp. 26-29.

ProcSimity Manual . (1997). ProcSimity V4.3 User’s Manual. University of Oregon.

Seo, K.-H. (2005). Fragmentation-efficient node allocation algorithm in 2D mesh-
connected systems. Proceedings of the 8th International Symposium on
Parallel Architecture, Algorithms and Networks (ISPAN’05) (pp. 318-323).

Washington, DC, USA: IEEE Computer Society Press.

Suzaki, K., Tanuma, H., Hirano, S., Ichisugi, Y., Connelly, C., and Tsukamoto, M.
(1996). Multi-tasking method on parallel computers which combines a
contiguous and a non-contiguous processor partitioning algorithm.
Proceedings of the 3rd International Workshop on Applied Parallel
Computing, Industrial Computation and Optimization (pp. 641-650). London:

Springer.

88

www.manaraa.com

Wan, M., Moore, R., Kremenek, G., and Steube, K. (1996). A batch scheduler for the
Intel Paragon with a non-contiguous node allocation algorithm. Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing, IPPS

'96 (pp. 48-64). Berlin, Heidelberg: Springer Berlin Heidelberg.

Windisch, K., Miller, J., and Lo, V. (1995). ProcSimity: an experimental tool for
processor allocation and scheduling in highly parallel systems. Proceedings
of the 5th Symposium on the Frontiers of Massively Parallel Computation
(Frontiers'95) (pp. 414-421). Washington, DC, USA: IEEE Computer Society

Press.

Wu, F., Hsu, C.-C., and Chou, L.-P. (2003). Processor Allocation in the Mesh
Multiprocessors Using the Leapfrog Method. IEEE Transactions on Parallel

and Distributed Systems, 14(3), pp. 276-289.

Yoo, B.-S., and Das, C.-R. (2002). A Fast and Efficient Processor Allocation Scheme
for Mesh-Connected Multicomputers. IEEE Transactions on Parallel and

Distributed Systems, 51(1), 46-60.

Zhu, Y. (1992). Efficient Processor Allocation Strategies for Mesh-Connected
Parallel Computers. Journal of Parallel and Distributed Computing, 16(4),

328-337.

89

www.manaraa.com

@

uadla

walbadll 5 alaal) Cilide; cliudail) ¢he A8lida 1 68 ASudld) Cuadd gadl cilasatia dabii) ac i
cladlea) Gasadil ANed cladl fu) il agall Gad My (Guardiowal) Sasaia iy B
Ao 8 e panadil) ciladl i) Allad aadad Eua (AaaiY) odgd dglaad) § il SNaiuy

A B algall &g ciby Sl g clallaall i) 53l 5

POty Ot) LGN ol all clamie B clallaadl gamedd cilbad) bl awds
ssalll o panaddl) & sladall Gamaddll clagd) du) aadad 3 jglkale € g 5 jslate
Al Sy Apd danadal) 4 jal) AGA) g4 08) id g Las ciladleall G (A a8
¢ mS IS g A JAY) el ASiia j9gdd A1 138 glaill Ja yd g2y BB g callall) & Jay)
ullal A<] g aUAL (B 58 gial) cladlaall (pa Ao gana 3529 dis A LA il) uaalig
Jira A) ASiall 038 (525 W gt ade qu qullal) UM Lguanads (S Y (81 (na
el sd 7)) a3 AU B algall ¢igSa g Baly) il g calail) B clallaal) Dl
A o il b) hail) lld o aad a8 o) el Al dae JaS jglatall i (anaddl)
Al ALl 56 (el ANy (Wormhole Routing) Jie 4Sadd) Jals Jibudl Jaig
O A il DoY) Copelai a8) Ao B dle g Jul Al AS Al e Al) Lgadals
Cigdh cpant) V) g3 ¥ Basagall Jglatal) panadtll cla) @ e ALY Gl
O OSay Cua cclallaall) glatall & asadal) A a0 a8 AN Gle JSd sl o)) e
W U (o Yy ASud) (e 48 e o)] (A Lguanadlp o) o)) dlra daga cath apedl ADA
GV A g3 O dsial) ey clalia aad Bjglate clalaa o g giag QAN (a5 ol
AR A algall &igSa il gh Jana Juli il g aURH 8 cladlaall Pl Jira (A Cppea
bl i) OF Y ¢ sladall 1 auadil) aladiug Guuy aall) o8y a8 gial) Guwadl) Gl aa g
) g B Laa ABliA) algall Jila) G pal il ASEa e Al gladall & Ganadil)

Sl A (A 5 adal) gl B pall) Saly

90

www.manaraa.com

GG pamadiy dagy Adlide Ldls Adlal) jgladall @ Gamaddl) ailua)i axdiud
ladleal) cp sladll e dlle da o o Blal) e 3S5 Gl L Ll V) cdalial) 4 5ad)
oty il Auauaiiall plgall udind (3ash 08 Ama A A5 b A Aagal ducuaial
pda 8 a1 el algall cilthl dalial) 3 gladiall cladlaall G (San b S o Bliall
s panadil) dua sy Wl Ly Bana jglate p© (amadd Al il g 8 Al
Aaa) oA Aliad | a4l Al il sad) Cilaaia & Cighuall o Badiaall | gladiall
O bl anl 35 (e S LaS cdga A1 g AdAal) ol ppal) Eigan ada o 5 a8l da 584N
oV e a3) gl algeall cillls da JRAY dga Al il ASud) 8 AL algeal)

ALY algall Bl pal 35 (e SIS Chagy il g 6B puhua g B 10

oaial) Gasadill cilbia) il elal (3ol Aa T8 A)l A1 ol G BlSlacal) guilis & ygdal
had aladin) die @iy calladl) B algal) CigSa ciligl Jara duan (e gAY pgladall
AL A Jiba) an 35 a8 te da jiBall daa) 9Ad) 8 a8 Cusay 138 g ¢(JSU — JSI) Sl il
amadil) cilaa)l ed £131 (ra bt Juadl Ao) A) gad) 18l G Liagh guilial) o yedil Lag
abira & iy (Al gdall) g (JSU - aa)gl) Jud i) aad aladiad die 5 AY) jgladall 8
bl aladin) e da yiall Al sdd) Jo s AY) Gasadil) cliad) i) ¢ ol Ll cclal)

(A Jslaal) Juaiy

91

www.manaraa.com

